Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
NPJ Vaccines ; 8(1): 88, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37286568

Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. To prevent malaria, vaccination is the most effective strategy and there is an urgent need for new strategies to enhance current pathogen-based vaccines. Active or passive immunization against a mosquito saliva protein, AgTRIO, contributes to protection against Plasmodium infection of mice. In this study, we generated an AgTRIO mRNA-lipid nanoparticle (LNP) and assessed its potential usefulness as a vaccine against malaria. Immunization of mice with an AgTRIO mRNA-LNP generated a robust humoral response, including AgTRIO IgG2a isotype antibodies that have been associated with protection. AgTRIO mRNA-LNP immunized mice exposed to Plasmodium berghei-infected mosquitoes had markedly reduced initial Plasmodium hepatic infection levels and increased survival compared to control mice. In addition, as the humoral response to AgTRIO waned over 6 months, additional mosquito bites boosted the AgTRIO IgG titers, including IgG1 and IgG2a isotypes, which offers a unique advantage compared to pathogen-based vaccines. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.

2.
Microorganisms ; 11(6)2023 May 27.
Article En | MEDLINE | ID: mdl-37374922

Tick-borne zoonoses pose a serious burden to global public health. To understand the distribution and determinants of these diseases, the many entangled environment-vector-host interactions which influence risk must be considered. Previous studies have evaluated how passive tick testing surveillance measures connect with the incidence of human Lyme disease. The present study sought to extend this to babesiosis and anaplasmosis, two rare tick-borne diseases. Human cases reported to the Massachusetts Department of Health and submissions to TickReport tick testing services between 2015 and 2021 were retrospectively analyzed. Moderate-to-strong town-level correlations using Spearman's Rho (ρ) were established between Ixodes scapularis submissions (total, infected, adult, and nymphal) and human disease. Aggregated ρ values ranged from 0.708 to 0.830 for anaplasmosis and 0.552 to 0.684 for babesiosis. Point observations maintained similar patterns but were slightly weaker, with mild year-to-year variation. The seasonality of tick submissions and demographics of bite victims also correlated well with reported disease. Future studies should assess how this information may best complement human disease reporting and entomological surveys as proxies for Lyme disease incidence in intervention studies, and how it may be used to better understand the dynamics of human-tick encounters.

3.
Front Cell Infect Microbiol ; 12: 1039197, 2022.
Article En | MEDLINE | ID: mdl-36506011

The significant rise in the number of tick-borne diseases represents a major threat to public health worldwide. One such emerging disease is human babesiosis, which is caused by several protozoan parasites of the Babesia genus of which B. microti is responsible for most clinical cases reported to date. Recent studies have shown that during its intraerythrocytic life cycle, B. microti exports several antigens into the mammalian host using a novel vesicular-mediated secretion mechanism. One of these secreted proteins is the immunodominant antigen BmGPI12, which has been demonstrated to be a reliable biomarker of active B. microti infection. The major immunogenic determinants of this antigen remain unknown. Here we provide a comprehensive molecular and serological characterization of a set of eighteen monoclonal antibodies developed against BmGPI12 and a detailed profile of their binding specificity and suitability in the detection of active B. microti infection. Serological profiling and competition assays using synthetic peptides identified five unique epitopes on the surface of BmGPI12 which are recognized by a set of eight monoclonal antibodies. ELISA-based antigen detection assays identified five antibody combinations that specifically detect the secreted form of BmGPI12 in plasma samples from B. microti-infected mice and humans but not from other Babesia species or P. falciparum.


Babesia microti , Babesia , Gastropoda , Malaria, Falciparum , Humans , Animals , Mice , Epitopes , Antibodies, Monoclonal , Immunodominant Epitopes , Mammals
4.
J Clin Microbiol ; 60(9): e0092522, 2022 09 21.
Article En | MEDLINE | ID: mdl-36040206

The apicomplexan pathogen Babesia microti is responsible for most cases of human babesiosis worldwide. The disease, which presents as a malaria-like illness, is potentially fatal in immunocompromised or elderly patients, making the need for its accurate and early diagnosis an urgent public health concern. B. microti is transmitted primarily by Ixodes ticks but can also be transmitted via blood transfusion. The parasite completes its asexual reproduction in the host red blood cell, where each invading merozoite develops and multiplies to produce four daughter parasites. While various techniques, such as microscopy, PCR, and indirect fluorescence, have been used over the years for babesiosis diagnosis, detection of the secreted B. microti immunodominant antigen BmGPI12 using specific polyclonal antibodies was found to be the most effective method for the diagnosis of active infection and for evaluation of clearance following drug treatment. Here, we report the development of a panel of 16 monoclonal antibodies against BmGPI12. These antibodies detected secreted BmGPI12 in the plasma of infected humans. Antigen capture assays identified a combination of two monoclonal antibodies, 4C8 and 1E11, as a basis for a monoclonal antibody-based BmGPI12 capture assay (mGPAC) to detect active B. microti infection. Using a collection of 105 previously characterized human plasma samples, the mGPAC assay showed 97.1% correlation with RNA-based PCR (transcription-mediated amplification [TMA]) for positive and negative samples. The mGPAC assay also detected BmGPI12 in the plasma of six babesiosis patients at the time of diagnosis but not in three matched posttreatment samples. The mGPAC assay could thus be used alone or in combination with other assays for accurate detection of active B. microti infection.


Babesia microti , Babesiosis , Aged , Antibodies, Monoclonal , Antigens, Protozoan , Babesia microti/genetics , Babesiosis/diagnosis , Humans , RNA
6.
Clin Infect Dis ; 2022 Mar 23.
Article En | MEDLINE | ID: mdl-35325084

BACKGROUND: Borrelia miyamotoi is a relapsing fever spirochete that relatively recently has been reported to infect humans. It causes an acute undifferentiated febrile illness that can include meningoencephalitis and relapsing fever. Like Borrelia burgdorferi, it is transmitted by Ixodes scapularis ticks in the northeastern United States and by Ixodes pacificus ticks in the western United States. Despite reports of clinical cases from North America, Europe, and Asia, the prevalence, geographic range, and pattern of expansion of human B. miyamotoi infection are uncertain. To better understand these characteristics of B. miyamotoi in relation to other tickborne infections, we carried out a cross-sectional seroprevalence study across New England that surveyed B. miyamotoi, B. burgdorferi, and Babesia microti infections. METHODS: We measured specific antibodies against B. miyamotoi, B. burgdorferi, and B. microti among individuals living in 5 New England states in 2018. RESULTS: Analysis of 1153 serum samples collected at 11 catchment sites showed that the average seroprevalence for B. miyamotoi was 2.8% (range, 0.6%-5.2%), which was less than that of B. burgdorferi (11.0%; range, 6.8%-15.6%) and B. microti (10.0%; range, 6.5%-13.6%). Antibody screening within county residence in New England showed varying levels of seroprevalence for these pathogens but did not reveal a vectoral geographical pattern of distribution. CONCLUSIONS: Human infections caused by B. miyamotoi, B. burgdorferi, and B. microti are widespread with varying prevalence throughout New England.

7.
Emerg Infect Dis ; 27(12): 3193-3195, 2021 12.
Article En | MEDLINE | ID: mdl-34808077

During 2013-2019, Borrelia miyamotoi infection was detected in 19 US states. Infection rate was 0.5%-3.2%; of B. miyamotoi-positive ticks, 59.09% had concurrent infections. B. miyamotoi is homogeneous with 1 genotype from Ixodes scapularis ticks in northeastern and midwestern states and 1 from I. pacificus in western states.


Borrelia Infections , Borrelia , Ixodes , Animals , Borrelia/genetics , Borrelia Infections/epidemiology , Humans , United States/epidemiology
8.
Vaccine ; 39(12): 1675-1679, 2021 03 19.
Article En | MEDLINE | ID: mdl-33622591

Zika virus(ZIKV) is primarily spread by Aedes. aegyptimosquitoes. Infection with ZIKV can result in diverse clinical symptoms in humans, ranging from mild to severe. Previously, we demonstrated that passive immunization against A. aegypti AgBR1 or NeSt1 antiserum, two mosquito saliva proteins that are transmitted with the virus, conferred partial protection against ZIKV in mice. Each individual antiserum altered the early host response in the skin and reduced viremia. Here, we show that passive immunization with a combination of AgBR1- and NeSt1-specific antibodies enhanced survival and reduced the viral burden in blood, thereby protecting mice from mosquito-borne ZIKV infection. This finding suggests that targeting a combination of mosquito saliva proteins, with AgBR1 and NeSt1 as model antigens, may be used as a vaccine strategy to help prevent mosquito-borne ZIKV infection.


Aedes , Zika Virus Infection , Zika Virus , Animals , Immune Sera , Mice , Mosquito Vectors , Saliva , Zika Virus Infection/prevention & control
9.
Kidney360 ; 2(6): 924-936, 2021 06 24.
Article En | MEDLINE | ID: mdl-35373072

Background: SARS-CoV-2 infection has, as of April 2021, affected >133 million people worldwide, causing >2.5 million deaths. Because the large majority of individuals infected with SARS-CoV-2 are asymptomatic, major concerns have been raised about possible long-term consequences of the infection. Methods: Wedeveloped an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from patients with COVID-19whose diagnosis was confirmed by positive PCR results from nasopharyngeal swabs (NP-PCR+) forSARS-CoV-2. We used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Children's Hospital of Philadelphia that were obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-), and a collection of 20 urine samples from 20 individuals collected before the pandemic. Results: Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, one child who was NP-PCR- was found to be positive for spike protein in their urine. Of the 23 adults who were Ur-S+, only one individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of adults who were NP-PCR+ had high levels of albumin and cystatin C, respectively, in their urine. Among individuals with albuminuria (>0.3 mg/mg of creatinine), statistical correlation could be found between albumin and spike protein in urine. Conclusions: Together, our data showed that one of four individuals infected with SARS-CoV-2 develop renal abnormalities, such as albuminuria. Awareness about the long-term effect of these findings is warranted.


COVID-19 , Spike Glycoprotein, Coronavirus , Adult , COVID-19/diagnosis , Child , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Vaccine ; 38(51): 8121-8129, 2020 12 03.
Article En | MEDLINE | ID: mdl-33168347

Tick-borne diseases pose a global medical problem. As transmission of tick-borne pathogens to their hosts occurs during tick feeding, development of vaccines thwarting this process could potentially prevent transmission of multiple tick-borne pathogens. The idea of tick vaccines is based on the phenomenon of acquired tick immunity, rejection of ticks feeding on hosts which were repeatedly infested by ticks. Recently, we demonstrated that saliva of the blacklegged tick Ixodes scapularis, which is the main vector of tick-borne pathogens in northeast USA, is sufficient for induction of tick immunity in the guinea pig model and that immunity directed against tick glycoproteins is important in this phenomenon. Nevertheless, immunity elicited against individual tick salivary antigens, which have been identified and tested so far, provided only modest tick rejection. We therefore now tested fractions of tick saliva produced by liquid chromatography for their ability to induce tick immunity in the guinea pig model. Immunization with all individual fractions elicited antibodies that reacted with tick saliva, however only some fractions displayed the ability to induce robust protective tick immunity. Mass spectrometry analysis led to identification of 24 proteins present only in saliva fractions which were able to induce tick immunity, suggesting suitable candidates for development of a tick vaccine.


Ixodes , Animals , Chromatography, Liquid , Glycoproteins , Guinea Pigs , Saliva
11.
ACS Med Chem Lett ; 11(10): 1843-1847, 2020 Oct 08.
Article En | MEDLINE | ID: mdl-33062162

Human Macrophage Migration Inhibitory Factor (MIF) is a trimeric cytokine implicated in a number of inflammatory and autoimmune diseases and cancer. We previously reported that the dye p425 (Chicago Sky Blue), which bound MIF at the interface of two MIF trimers covering the tautomerase and allosteric pockets, revealed a unique strategy to block MIF's pro-inflammatory activities. Structural liabilities, including the large size, precluded p425 as a medicinal chemistry lead for drug development. We report here a rational design strategy linking only the fragment of p425 that binds over the tautomerase pocket to the core of ibudilast, a known MIF allosteric site-specific inhibitor. The chimeric compound, termed L2-4048, was shown by X-ray crystallography to bind at the allosteric and tautomerase sites as anticipated. L2-4048 retained target binding and blocked MIF's tautomerase CD74 receptor binding, and pro-inflammatory activities. Our studies lay the foundation for the design and synthesis of smaller and more drug-like compounds that retain the MIF inhibitory properties of this chimera.

12.
Vaccines (Basel) ; 8(2)2020 Mar 25.
Article En | MEDLINE | ID: mdl-32218189

Zika Virus (ZIKV) is transmitted primarily by Aedes aegypti mosquitoes, resulting in asymptomatic infection, or acute illness with a fever and headache, or neurological complications, such as Guillain-Barre syndrome or fetal microcephaly. Previously, we determined that AgBR1, a mosquito salivary protein, induces inflammatory responses at the bite site, and that passive immunization with AgBR1 antiserum influences mosquito-transmitted ZIKV infection. Here, we show that the active immunization of mice with AgBR1 adjuvanted with aluminum hydroxide delays lethal mosquito-borne ZIKV infection, suggesting that AgBR1 may be used as part of a vaccine to combat ZIKV.

13.
Life Sci Alliance ; 2(3)2019 06.
Article En | MEDLINE | ID: mdl-31196872

The apicomplexan parasite Babesia microti is the primary agent of human babesiosis, a malaria-like illness and potentially fatal tick-borne disease. Unlike its close relatives, the agents of human malaria, B. microti develops within human and mouse red blood cells in the absence of a parasitophorous vacuole, and its secreted antigens lack trafficking motifs found in malarial secreted antigens. Here, we show that after invasion of erythrocytes, B. microti undergoes a major morphogenic change during which it produces an interlacement of vesicles (IOV); the IOV system extends from the plasma membrane of the parasite into the cytoplasm of the host erythrocyte. We developed antibodies against two immunodominant antigens of the parasite and used them in cell fractionation studies and fluorescence and immunoelectron microscopy analyses to monitor the mode of secretion of B. microti antigens. These analyses demonstrate that the IOV system serves as a major export mechanism for important antigens of B. microti and represents a novel mechanism for delivery of parasite effectors into the host by this apicomplexan parasite.


Antigens, Protozoan/immunology , Babesia microti/immunology , Babesia microti/metabolism , Babesiosis/parasitology , Transport Vesicles/metabolism , Animals , Biological Transport , Disease Models, Animal , Erythrocytes/parasitology , Erythrocytes/ultrastructure , Humans , Immunodominant Epitopes/immunology , Mice , Mice, Knockout
14.
Clin Infect Dis ; 68(6): 1052-1057, 2019 03 05.
Article En | MEDLINE | ID: mdl-30307486

Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infection have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other emerging infections and show promise in direct detection of B. burgdorferi infections.


Borrelia burgdorferi , Lyme Disease/diagnosis , Lyme Disease/microbiology , Borrelia burgdorferi/genetics , Diagnostic Tests, Routine , Genomics/methods , High-Throughput Screening Assays , Humans , Polymerase Chain Reaction , Serologic Tests
15.
J Clin Microbiol ; 56(10)2018 10.
Article En | MEDLINE | ID: mdl-30093394

Human babesiosis is an emerging zoonotic infectious disease caused by intraerythrocytic protozoan parasites of the genus Babesia Most cases of human babesiosis are caused by Babesia microti and often manifest in individuals over the age of 50 years or in patients with a compromised immune system. Patients who develop symptomatic B. microti infections usually experience months of asymptomatic infection after the acute infection has resolved. About one-fifth of B. microti-infected adults never develop symptoms. These asymptomatically infected individuals sometimes donate blood and thus can transmit B. microti through blood transfusion. Current assays for detection of active B. microti infections can be used to screen donor blood prior to transfusion, but they rely primarily on microscopy or PCR methods, which have sensitivity and technical limitations. Here we report the development of an antigen capture enzyme-linked immunosorbent assay (BmGPAC) based on a major secreted immunodominant antigen of B. microti (BmGPI12/BmSA1), and we provide evidence that this assay is superior for detection of active B. microti infections, compared to available microscopy methods and serological assays. The assay has been evaluated using supernatants of B. microti-infected erythrocytes cultured in vitro, sera from B. microti-infected laboratory mice, and sera from wild mice and human patients. Our data suggest that the BmGPAC assay is a reliable assay for detection of active B. microti infections and is superior to real-time PCR and antibody assays for diagnosis of acute B. microti infections, screening of the blood supply, and epidemiological surveys of humans and animal reservoir hosts.


Antigens, Protozoan/blood , Babesiosis/diagnosis , Enzyme-Linked Immunosorbent Assay , Parasitology/methods , Serologic Tests/standards , Animals , Antigens, Protozoan/metabolism , Babesia microti/physiology , Babesiosis/blood , Cells, Cultured , Erythrocytes/parasitology , Female , Humans , Male , Mice
16.
J Clin Microbiol ; 56(3)2018 03.
Article En | MEDLINE | ID: mdl-29263203

The recent outbreak of Zika virus (ZIKV) in the Americas has challenged diagnostic laboratory testing strategies. At the Wadsworth Center, ZIKV serological testing was performed for over 10,000 specimens, using a combination of an enzyme-linked immunosorbent assay (ELISA) for IgM antibodies (Abs) to ZIKV, a polyvalent microsphere immunoassay (MIA) to detect Abs broadly reactive with flaviviruses, and a plaque reduction neutralization test (PRNT) for further testing. Overall, 42% of patients showed serological evidence of flavivirus infection (primarily past dengue virus [DENV] infection), while 7% possessed IgM Abs to ZIKV and/or DENV. ZIKV IgM Abs typically arose within 3 to 4 days, with only one instance of duration beyond 100 days after reported symptoms. PRNT analysis of 826 IgM-positive specimens showed 7% positive neutralization to ZIKV alone, 9% to DENV alone, and 85% to both ZIKV and DENV. Thus, the extensive Ab cross-reactivity among flaviviruses significantly reduced the value of performing PRNT analysis, especially when a traditional paired serum algorithm with viral neutralization titering was used. Nevertheless, the finding of a negative ZIKV result by PRNT was invaluable for reassuring both physicians and patients. The MIA detected both IgM and IgG, which enabled us to identify patients who presented without IgM anti-ZIKV Abs but still had ZIKV-specific neutralizing Abs. On the basis of these results, a new algorithm, which included an IgM Ab capture (MAC)-ELISA to detect recent infection, a flavivirus MIA to identify patients no longer producing IgM, and a single-dilution PRNT for ZIKV exclusion and occasional discrimination of ZIKV and DENV, was implemented.


Serologic Tests/methods , Zika Virus Infection/diagnosis , Zika Virus/immunology , Algorithms , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue Virus/immunology , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , New York , Practice Guidelines as Topic , Serologic Tests/trends , Zika Virus/isolation & purification
17.
Clin Infect Dis ; 66(7): 1133-1139, 2018 03 19.
Article En | MEDLINE | ID: mdl-29228208

The cause of Lyme disease, Borrelia burgdorferi, was discovered in 1983. A 2-tiered testing protocol was established for serodiagnosis in 1994, involving an enzyme immunoassay (EIA) or indirect fluorescence antibody, followed (if reactive) by immunoglobulin M and immunoglobulin G Western immunoblots. These assays were prepared from whole-cell cultured B. burgdorferi, lacking key in vivo expressed antigens and expressing antigens that can bind non-Borrelia antibodies. Additional drawbacks, particular to the Western immunoblot component, include low sensitivity in early infection, technical complexity, and subjective interpretation when scored by visual examination. Nevertheless, 2-tiered testing with immunoblotting remains the benchmark for evaluation of new methods or approaches. Next-generation serologic assays, prepared with recombinant proteins or synthetic peptides, and alternative testing protocols, can now overcome or circumvent many of these past drawbacks. This article describes next-generation serodiagnostic testing for Lyme disease, focusing on methods that are currently available or near-at-hand.


Antibodies, Bacterial/blood , Lyme Disease/diagnosis , Serologic Tests/methods , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Borrelia burgdorferi/immunology , Enzyme-Linked Immunosorbent Assay , Europe , Humans , Immunoenzyme Techniques , Immunoglobulin G/blood , Immunoglobulin M/blood , Recombinant Proteins , Sensitivity and Specificity , Serologic Tests/trends , United States
18.
Biochim Biophys Acta Gen Subj ; 1862(1): 40-50, 2018 Jan.
Article En | MEDLINE | ID: mdl-29030319

Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100µM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. IMPORTANCE: Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.


Cobalt , Coordination Complexes , Copper , Dengue Virus/metabolism , Keratinocytes/virology , Viral Load/drug effects , Zika Virus/metabolism , Animals , Chlorocebus aethiops , Cobalt/chemistry , Cobalt/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Culicidae , HeLa Cells , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Vero Cells , Viral Envelope Proteins
19.
PLoS One ; 10(6): e0128913, 2015.
Article En | MEDLINE | ID: mdl-26091292

Pathogenic Leptospira species cause a prevalent yet neglected zoonotic disease with mild to life-threatening complications in a variety of susceptible animals and humans. Diagnosis of leptospirosis, which primarily relies on antiquated serotyping methods, is particularly challenging due to presentation of non-specific symptoms shared by other febrile illnesses, often leading to misdiagnosis. Initiation of antimicrobial therapy during early infection to prevent more serious complications of disseminated infection is often not performed because of a lack of efficient diagnostic tests. Here we report that specific regions of leptospiral 16S ribosomal RNA molecules constitute a novel and efficient diagnostic target for PCR-based detection of pathogenic Leptospira serovars. Our diagnostic test using spiked human blood was at least 100-fold more sensitive than corresponding leptospiral DNA-based quantitative PCR assays, targeting the same 16S nucleotide sequence in the RNA and DNA molecules. The sensitivity and specificity of our RNA assay against laboratory-confirmed human leptospirosis clinical samples were 64% and 100%, respectively, which was superior then an established parallel DNA detection assay. Remarkably, we discovered that 16S transcripts remain appreciably stable ex vivo, including untreated and stored human blood samples, further highlighting their use for clinical detection of L. interrogans. Together, these studies underscore a novel utility of RNA targets, specifically 16S rRNA, for development of PCR-based modalities for diagnosis of human leptospirosis, and also may serve as paradigm for detection of additional bacterial pathogens for which early diagnosis is warranted.


Leptospira/genetics , Leptospirosis/microbiology , RNA, Bacterial , RNA, Ribosomal, 16S , Animals , Cricetinae , Disease Models, Animal , Humans , Leptospirosis/diagnosis , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
20.
J Clin Invest ; 125(3): 1163-73, 2015 Mar 02.
Article En | MEDLINE | ID: mdl-25642774

UNLABELLED: Role of the funding source: Funding from the NIH was used for support of the participating clinical centers and the coordinating center. The funding source did not participate in the collection or the analysis of the data. BACKGROUND: The ß cell killing that characterizes type 1 diabetes (T1D) is thought to begin years before patients present clinically with metabolic decompensation; however, this primary pathologic process of the disease has not been measured. METHODS: Here, we measured ß cell death with an assay that detects ß cell-derived unmethylated insulin (INS) DNA. Using this assay, we performed an observational study of 50 participants from 2 cohorts at risk for developing T1D from the TrialNet Pathway to Prevention study and of 4 subjects who received islet autotransplants. RESULTS: In at-risk subjects, those who progressed to T1D had average levels of unmethylated INS DNA that were elevated modestly compared with those of healthy control subjects. In at-risk individuals that progressed to T1D, the observed increases in unmethylated INS DNA were associated with decreases in insulin secretion, indicating that the changes in unmethylated INS DNA are indicative of ß cell killing. Subjects at high risk for T1D had levels of unmethylated INS DNA that were higher than those of healthy controls and higher than the levels of unmethylated INS DNA in the at-risk progressor and at-risk nonprogressor groups followed for 4 years. Evaluation of insulin secretory kinetics also distinguished high-risk subjects who progressed to overt disease from those who did not. CONCLUSION: We conclude that a blood test that measures unmethylated INS DNA serves as a marker of active ß cell killing as the result of T1D-associated autoimmunity. Together, the data support the concept that ß cell killing occurs sporadically during the years prior to diagnosis of T1D and is more intense in the peridiagnosis period. TRIAL REGISTRATION: Clinicaltrials.gov NCT00097292. FUNDING: Funding was from the NIH, the Juvenile Diabetes Research Foundation, and the American Diabetes Association.


Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/physiology , Cell Death , Child , DNA Methylation , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/prevention & control , Disease Progression , Glucose Intolerance , Humans , Insulin/genetics , Prospective Studies , Risk
...