Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
ACS Appl Mater Interfaces ; 16(17): 22512-22521, 2024 May 01.
Article En | MEDLINE | ID: mdl-38651627

Gold-sulfur interaction has vital importance in nanotechnologies and material chemistry to design functional nanoparticles, self-assembled monolayers, or molecular complexes. In this paper, a mixture of only two basic precursors, such as the chloroauric acid (HAu(III)Cl4) and a thiol molecule (p-fluorothiophenol (p-HSPhF)), are used for the synthesis of gold(I)-thiolate coordination polymers. Under different conditions of synthesis and external stimuli, five different functional materials with different states of [Au(I)(p-SPhF)]n can be afforded. These gold-thiolate compounds are (i) red emissive, flexible, and crystalline fibers; (ii) composite materials made of these red emissive fibers and gold nanoparticles; (iii) amorphous phase; (iv) transparent glass; and (v) amorphous-to-crystalline phase-change material associated with an ON/OFF switch of luminescence. The different functionalities of these materials highlight the great versatility of the gold(I) thiolate coordination polymers with easy synthesis and diverse shaping that may have great potential as sustainable phosphors, smart textiles, sensors, and phase change memories.

2.
Phys Chem Chem Phys ; 25(28): 19254-19265, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37432739

Non-contact temperature measurement at the nanoscale by photoluminescence using a nano-sensor in a confined fluid has been performed in the present work. Upconversion lanthanide-doped nanoparticles applied to ratiometric thermometry could be considered as a self-referenced nanosensor. Gadolinium orthovanadate (GdVO4) nanoparticles doped with Yb3+ and Er3+ were synthesized and then dispersed in an ester-based fluid. Rheological measurements show that the viscosity of the dispersed NP suspension remains unchanged up to a shear rate of 10-4 s-1 at 393 K. The NP suspension allows luminescence intensity ratio (LIR) thermometry up to 473 K with a relative sensitivity of 1.17% K-1 with a NIR laser. Then, the temperature calibration by coupling the high pressure (1.08 GPa max) confirmed the applicability of NPs as a thermosensor in a variable pressure environment. According to these results, the fluid containing GdVO4:Yb3+/Er3+ nanoparticles can be used for temperature sensing in a pressurized environment for further application in tribology.

3.
J Mater Chem B ; 11(18): 3979-3984, 2023 05 10.
Article En | MEDLINE | ID: mdl-37078201

Silver nanoparticles are known and widely used for their antimicrobial activities. Nevertheless, once they are released into the natural or biological environments, they can become toxic with time, because of the dissolution of some Ag(I) ions that can then react with thiol-based molecules, such as glutathione and/or compete with copper proteins. These assumptions are based on the high affinity of the soft acid Ag(I) and the soft base thiolates and the exchange reactions that are involved in complex physiological media. Here we synthesized and fully characterized two new 2D silver thiolate coordination polymers (CPs) that exhibit a reversible 2D-to-1D structural transformation in the presence of an excess of thiol molecules. This dimensionality change induces also a switch of the yellow emission of the Ag-thiolate CP. This study highlights that these highly stable silver-thiolate CPs, in basic, acidic and oxidant media can undergo a complete dissolution-recrystallization mechanism upon thiol exchange reactions.


Metal Nanoparticles , Polymers , Metal Nanoparticles/chemistry , Silver/chemistry , Ligands , Sulfhydryl Compounds/chemistry
4.
iScience ; 26(2): 106016, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36798445

The d10 coinage metal coordination polymers (CPs) are known to display photophysical properties which can be tuned depending on the functionality of the ligand. Three new CPs made of d10 coinage metals and methyl thiosalicylate, [M(o-SPhCO2Me)]n (M = Cu, Ag, Au), are reported. They are all constructed from one-dimensional metal-sulfur networks, in which Cu and Ag are three-coordinated to sulfur atoms, whereas Au is only two-coordinated. It results that both Cu(I) and Ag(I) CPs show orange photoemission at room temperature, and the Au(I) one exhibits near-infrared emission at low temperatures. The intense orange-emissive Ag(I) CP and the blue-emissive coumarin 120 have been mixed in an organic matrix, the polyvinylidene fluoride (PVDF), to form a dual luminescent flexible composite film. This film, evaluated for thermometry, shows great sensitivity for temperatures up to 100°C, a temperature never reached with non-lanthanide-based CPs.

5.
Chem Commun (Camb) ; 58(58): 8081-8084, 2022 Jul 19.
Article En | MEDLINE | ID: mdl-35765973

A new tridimensional metal-organic chalcogenolate, made of a 1,3-benzenedithiolate bridging ligand and Ag(I), [Ag2(1,3-BDT)]n, is reported. This coordination polymer has good thermal stability in air and displays both photoluminescence properties and a second harmonic generation response.

6.
Water Res ; 220: 118628, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35640501

Hydrodynamic cavitation was evaluated for its reactive oxygen species production in several convergent-divergent microchannel at the transition from micro to milli scale. Channel widths and heights were systematically varied to study the influence of geometrical parameters at the transitory scale. A photomultiplier tube was used for time-resolved photon detection and monitoring of the chemiluminescent luminol oxidation reactions, allowing for a contactless and in situ quantization of reactive oxygen species production in the channels. The radical production rates at various flow parameters were evaluated, showing an optimal yield per flow rate exists in the observed geometrical range. While cavitation cloud shedding was the prevailing regime in this type of channels, the photon arrival time analysis allowed for an investigation of the cavitation structure dynamics and their contribution to the chemical yield, revealing that radical production is not linked to the synchronous cavitation cloud collapse events. Instead, individual bubble collapses occurring throughout the cloud formation were recognized to be the source of the reactive oxygen species.


Hydrodynamics , Luminol , Luminescent Measurements , Luminol/pharmacology , Oxidation-Reduction , Reactive Oxygen Species
7.
Angew Chem Int Ed Engl ; 61(14): e202117261, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35104379

The discovery of a universal memory that exhibits fast access speed, high-density storage, and non-volatility has fuelled research into phase-change materials over the past decades. In spite of the efficiency of the inorganic chalcogenides for phase-change random access memory (PCRAM), they still have some inherent drawbacks, such as high temperature required for phase change and difficulty to control the domain size of the phase change, because of their brittleness. Here we present a AuI -thiolate coordination polymer which undergoes two successive phase changes on application of mild heating (<200 °C) from amorphous-to-crystalline1-to-crystalline2 phases. These transitions are reversible upon soft hand grinding. More importantly, each phase exhibits different photoluminescent properties for an efficient optical read-out. We believe that the ability of the AuI -thiolate coordination polymer to have reversible phase changes under soft conditions and at the same time to display distinct optical signals, can pave the way for the next generation of PCRAM.

8.
Nanoscale ; 13(46): 19578-19586, 2021 Dec 02.
Article En | MEDLINE | ID: mdl-34807212

We explore the effect of the shell thickness on the time response of CdS/CdSe/CdS spherical quantum wells (SQWs) nanoscintillators under X-ray excitation. We first compare the spectral and timing properties under low and intense optical excitation, which allows us to identify the complex temporal and spectral response of the highly excited species. We find that a defect-induced delayed luminescence appears at large sizes. Under pulsed X-ray excitation, an analysis of the scintillation decay time reveals that multiexcitons are generated, similarly to the intense optical excitation and that the shell thickness does not change the fraction of fast component to a large extent. We performed a two-step simulation of the energy relaxation in the SQWs which reveals that large-size SQWs favor a very high number of excitations per particle, which, however, is counterbalanced by increased Auger quenching, rendering large SQWs less effective regarding the timing performance.

9.
Ultrason Sonochem ; 71: 105370, 2021 Mar.
Article En | MEDLINE | ID: mdl-33130383

Hydrodynamic cavitation experiments in microfluidic systems have been performed with an aqueous solution of luminol as the working fluid. In order to identify where and how much reactive radical species are formed by the violent bubble collapse, the resulting chemiluminescent oxidation reaction of luminol was scrutinized downstream of a constriction in the microchannel. An original method was developed in order to map the intensity of chemiluminescence emitted from the micro-flow, allowing us to localize the region where radicals are produced. Time averaged void fraction measurements performed by laser induced fluorescence experiments were also used to determine the cavitation cloud position. The combination void fraction and chemiluminescence two-dimensional mapping demonstrated that the maximum chemiluminescent intensity area was found just downstream of the cavitation clouds. Furthermore, the radical yield can be obtained with our single photon counting technique. The maximum radical production rates of 1.2*107 OH/s and radical production per processed liquid volume of 2.15*1010 HO/l were observed. The proposed technique allows for two-dimensional characterisation of radical production in the microfluidic flow and could be a quick, non-intrusive way to optimise hydrodynamic cavitation reactor design and operating parameters, leading to enhancements in wastewater treatments and other process intensifications.

10.
Chem Sci ; 11(26): 6815-6823, 2020 Jul 14.
Article En | MEDLINE | ID: mdl-33033596

Obtaining transparent glasses made of functional coordination polymers (CPs) represents a tremendous opportunity for optical applications. In this context, the first transparent and red-emissive glasses of gold thiolate CPs have been obtained by simply applying mechanical pressure to amorphous powders of CPs. The three gold-based CP glasses are composed of either thiophenolate [Au(SPh)] n , phenylmethanethiolate [Au(SMePh)] n or phenylethanethiolate [Au(SEtPh)] n . The presence of a longer alkyl chain between the thiolate and the phenyl ring led to the formation of glass with higher transparency. The glass transitions, measured by thermomechanical analysis (TMA), occurred at lower temperature for CPs with longer alkyl chains. In addition, all three gold thiolate glasses exhibit red emission at 93 K and one of them, [Au(SMePh)] n , remains luminescent even at room temperature. An in-depth structural study of the amorphous gold thiolates by XRD, PDF and EXAFS analysis showed that they are formed of disordered doubly interpenetrated helical chains. These d10 metal-based compounds represent the first examples of transparent and luminescent CP glasses.

11.
Inorg Chem ; 59(11): 7727-7738, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-32412247

The identification of reactive intermediates during molecule-to-nanoparticle (NP) transformation has great significance in comprehending the mechanism of NP formation and, therefore, optimizing the synthetic conditions and properties of the formed products. We report here the room temperature (RT) synthesis of AgCuSe NPs from the reaction of di-tert-butyl selenide with trifluoroacetates (TFA) of silver(I) and copper(II). The isolation and characterization of a molecular species during the course of this reaction, [Ag2Cu(TFA)4(tBu2Se)4] (1), which shows extraordinary reactivity and interesting thermochromic behavior (blue at 0 °C and green at RT), confirmed that ternary metal selenide NPs are formed via this intermediate species. Similar reactions with related dialkyl chalcogenide R2E resulted in the isolation of molecular species of similar composition, [Ag2Cu(TFA)4(R2E)4] [R = tBu, E = S (2); R = Me, E = Se (3); R = Me, E = S (4)], which are stable at RT but can be converted to ternary metal chalcogenides at elevated temperature. Density functional theory calculations confirm the kinetic instability of 1 and throw light on its thermochromic properties.

12.
Nanomaterials (Basel) ; 9(10)2019 Oct 02.
Article En | MEDLINE | ID: mdl-31581749

The photoluminescence of gold thiolate clusters brings about many potential applications, but its origin is still elusive because of its complexity. A strategy in understanding the structure-properties relationship is to study closely related neutral gold thiolate coordination polymers (CPs). Here, a new CP is reported, [Au(m-SPhCO2H)]n. Its structure is lamellar with an inorganic layer made of Au-S-Au-S helical chains, similar to the [Au(p-SPhCO2H)]n analog. An in-depth study of its photophysical properties revealed that it is a bright yellow phosphorescent emitter with a band centered at 615 nm and a quantum yield (QY) of 19% at room temperature and in a solid state. More importantly, a comparison to the para-analog, which has a weak emission, displayed a strong effect of the position of the electron withdrawing group (EWG) on the luminescent properties. In addition, [Au(m-SPhCO2H)]n CPs were mixed with organic polymers to generate transparent and flexible luminescent thin films. The ability to tune the emission position with the appropriate contents makes these nontoxic polymer composites promising materials for lighting devices.

13.
Nanoscale Adv ; 1(10): 3963-3972, 2019 Oct 09.
Article En | MEDLINE | ID: mdl-36132111

While doping of semiconductors or oxides is crucial for numerous technological applications, its control remains difficult especially when the material is reduced down to the nanometric scale. In this paper, we show that pulsed laser ablation of an undoped solid target in an aqueous solution containing activator ions offers a new way to synthesise doped-nanoparticles. The doping efficiency is evaluated for laser ablation of an undoped Gd2O3 target in aqueous solutions of EuCl3 with molar concentration from 10-5 mol L-1 to 10-3 mol L-1. Thanks to luminescence experiments, we show that the europium ions penetrate the core of the synthesised monoclinic Gd2O3 nanoparticles. We also show that the concentration of the activators in the nanoparticles is proportional to the initial concentration in europium ions in the aqueous solution, and a doping of about 1% ([Eu]/[Gd] atomic ratio) is reached. On the one hand, this work could open new ways for the synthesis of doped nanomaterials. On the other hand, it also raises the question of undesired penetration of impurities in laser-generated nanoparticles in liquids.

14.
Inorg Chem ; 58(1): 99-105, 2019 Jan 07.
Article En | MEDLINE | ID: mdl-30525528

The structures of two lamellar silver thiolate coordination polymers [Ag( p-SPhCO2H)] n (1) and [Ag( p-SPhCO2Me)] n (2) are described for the first time. Their inorganic part is composed of distorted Ag3S3 honeycomb networks separated by noninterpenetrated thiolate ligands. The main difference between the two compounds arises from dimeric hydrogen bonds present for the carboxylic acids. Indepth photophysical studies show that the silver thiolates exhibit multiemission properties, implying luminescence thermochromism. More interestingly, the synthesis of a heterometallic lamellar compound, [Ag0.85Cu0.15( p-SPhCO2H)] n (3), allows to obtain mixed metal thiolate coordination polymers and to tune the photophysical properties with the excitation wavelengths from a green vibronic luminescence to a single red emission band.

15.
Inorg Chem ; 57(5): 2736-2743, 2018 Mar 05.
Article En | MEDLINE | ID: mdl-29446926

Two copper(II)-carboxylate disulfide coordination polymers [Cu2((O2CPhS)2)2(H2O)2] n (1, 2) and one copper(I)-thiolate coordination polymer [Cu( p-SPhCO2H)] n (3) have been synthesized using either the 4-mercaptobenzoic acid (HSPhCO2H) or the 4,4'-dithiodibenzoic acid ((SPhCO2H)2) as ligand. These three compounds were characterized by X-ray diffraction, IR, and thermogravimetric analyses. Compounds 1 and 2 are polymorphs with the presence, for both, of dinuclear paddle-wheel copper(II)-carboxylates. In 1, the adjacent dimeric Cu2 units are linked by two (O2CPhS)2 ligands generating a cyclic loop chain, and in 2, each pair of Cu (II) atoms is linked by four ligands to create 2D networks, that are 2-fold interpenetrated. Compound 3 presents a lamellar structure, with an exceptional thermal and chemical stability, and exhibits intrinsic multiple emission between 485 and 660 nm. The different intensities of these bands generate a cyclic luminescence thermochromism from yellow to green to yellow.

16.
Chem Commun (Camb) ; 53(90): 12225-12228, 2017 Nov 09.
Article En | MEDLINE | ID: mdl-29085930

A copper thiolate coordination polymer, [Cu(p-SPhCO2Me)]n, is described and exhibits, under UV, luminescence thermochromism, associated to a unique well-separated triple emission. This compound is the most promising candidate as a ratiometric temperature sensor, working in a wide temperature range, from 100 to 500 K, with a great sensitivity.

17.
J Colloid Interface Sci ; 489: 114-125, 2017 Mar 01.
Article En | MEDLINE | ID: mdl-27576000

Carbon-based materials are of great technological and scientific interest in materials science. Pulsed laser ablation in liquids (PLAL) is extensively used as a method to produce nanoparticles including nanodiamond and related materials. In this feature article, we will review the use of PLAL to tackle the challenges of synthesizing carbon-based nanostructures. Surprisingly, reported results have shown very poor reproducibility despite the use of similar experimental conditions. We use plasma spectroscopy and shadowgraph imaging to provide a picture of the thermodynamic properties, and then to better understand this apparent contradiction. Our study was carried out under traditional conditions which involve nanosecond laser, and radiant exposures from tens to thousands J/cm2. Prompted by these results, the different scenarios reported in the literature are discussed including shockwave induced phase transition, growth in high temperatures-high pressures like conditions, and vapor phase chemistry.

18.
Chem Commun (Camb) ; 52(58): 9063-6, 2016 Jul 12.
Article En | MEDLINE | ID: mdl-26888556

The first structure elucidation of a lamellar gold thiolate coordination polymer is described. [Au(p-SPhCO2Me)]n is obtained from the simultaneous esterification of mercaptobenzoic acid and reduction of the Au(iii) precursor. Despite the presence of aurophilic interactions, the intense phosphorescence (QY ∼ 70%) originates from intra-ligand and metal-to-ligand transitions.

19.
J Phys Chem A ; 119(33): 8944-9, 2015 Aug 20.
Article En | MEDLINE | ID: mdl-26214730

A predictive model for nanoparticle nucleation has not yet been successfully achieved. Classical nucleation theory fails because the atomistic nature of the seed has to be considered. Indeed, geometrical structure as well as stoichiometry do not always match the bulk values. We present a fully microscopic approach based on a first-principle study of aluminum oxide clusters. We calculated stable structures of AlxOy and their associated thermodynamic properties. From these data, the chemical composition of a gas composed of aluminum and oxygen atoms can be calculated as a function of temperature, pressure, and aluminum to oxygen ratio. We demonstrate the accuracy of this approach in reproducing experimental results obtained with time-resolved spectroscopy of a laser-induced plasma from an Al2O3 target. We thus extended the calculation to lower temperatures, i.e., longer time scales, to propose a scenario of composition gas evolution leading to the first alumina seeds.

20.
Nanoscale ; 7(13): 5744-51, 2015 Mar 19.
Article En | MEDLINE | ID: mdl-25746211

Scintillating nanoparticles (NPs) in combination with X-ray or γ-radiation have a great potential for deep-tissue cancer therapy because they can be used to locally activate photosensitizers and generate singlet oxygen in tumours by means of the photodynamic effect. To understand the complex spatial distribution of energy deposition in a macroscopic volume of water loaded with nanoscintillators, we have developed a GEANT4-based Monte Carlo program. We thus obtain estimates of the maximum expected efficiency of singlet oxygen production for various materials coupled to PS, X-ray energies, NP concentrations and NP sizes. A new parameter, ηnano, is introduced to quantify the fraction of energy that is deposited in the NPs themselves, which is crucial for the efficiency of singlet oxygen production but has not been taken into account adequately so far. We furthermore emphasise the substantial contribution of primary interactions taking place in water, particularly under irradiation with high energy photons. The interplay of all these contributions to the photodynamic effect has to be taken into account in order to optimize nanoscintillators for therapeutic applications.


Energy Transfer/radiation effects , Models, Statistical , Nanoparticles/chemistry , Nanoparticles/radiation effects , Photochemotherapy/methods , X-Rays , Computer Simulation , Monte Carlo Method , Radiation Dosage , Singlet Oxygen/chemistry
...