Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Immunol ; 70: 101841, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37703611

RESUMEN

Cells undergo an inflammatory programmed lytic cell death called 'pyroptosis' (with the Greek roots 'fiery'), often featuring morphological hallmarks such as large ballooning protrusions and subsequent bursting. Originally described as a caspase-1-dependent cell death in response to bacterial infection, pyroptosis has since been re-defined in 2018 as a cell death dependent on plasma membrane pores by a gasdermin (GSDM) family member [1,2]. GSDMs form pores in the plasma membrane as well as organelle membranes, thereby initiating membrane destruction and the rapid and lytic demise of a cell. The gasdermin family plays a profound role in the execution of pyroptosis in the context of infection, inflammation, tumor pathogenesis, and anti-tumor therapy. More recently, cell-death-independent functions for some of the GSDMs have been proposed. Therefore, a comprehensive understanding of gasdermin gene regulation, including mechanisms in both homeostatic conditions and during inflammation, is essential. In this review, we will summarize the role of gasdermins in pyroptosis and focus our discussion on the transcriptional and epigenetic mechanisms controlling the expression of GSDMs.


Asunto(s)
Gasderminas , Proteínas de Neoplasias , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Apoptosis , Inflamación/metabolismo , Epigénesis Genética , Inflamasomas/metabolismo
2.
Nature ; 618(7967): 1072-1077, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196676

RESUMEN

Plasma membrane rupture (PMR) in dying cells undergoing pyroptosis or apoptosis requires the cell-surface protein NINJ11. PMR releases pro-inflammatory cytoplasmic molecules, collectively called damage-associated molecular patterns (DAMPs), that activate immune cells. Therefore, inhibiting NINJ1 and PMR may limit the inflammation that is associated with excessive cell death. Here we describe an anti-NINJ1 monoclonal antibody that specifically targets mouse NINJ1 and blocks oligomerization of NINJ1, preventing PMR. Electron microscopy studies showed that this antibody prevents NINJ1 from forming oligomeric filaments. In mice, inhibition of NINJ1 or Ninj1 deficiency ameliorated hepatocellular PMR induced with TNF plus D-galactosamine, concanavalin A, Jo2 anti-Fas agonist antibody or ischaemia-reperfusion injury. Accordingly, serum levels of lactate dehydrogenase, the liver enzymes alanine aminotransaminase and aspartate aminotransferase, and the DAMPs interleukin 18 and HMGB1 were reduced. Moreover, in the liver ischaemia-reperfusion injury model, there was an attendant reduction in neutrophil infiltration. These data indicate that NINJ1 mediates PMR and inflammation in diseases driven by aberrant hepatocellular death.


Asunto(s)
Anticuerpos Monoclonales , Membrana Celular , Inflamación , Hígado , Factores de Crecimiento Nervioso , Daño por Reperfusión , Animales , Ratones , Alanina Transaminasa , Alarminas , Anticuerpos Monoclonales/inmunología , Aspartato Aminotransferasas , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/inmunología , Moléculas de Adhesión Celular Neuronal/ultraestructura , Muerte Celular , Membrana Celular/patología , Membrana Celular/ultraestructura , Concanavalina A , Galactosamina , Hepatocitos/patología , Hepatocitos/ultraestructura , Inflamación/patología , Lactato Deshidrogenasas , Hígado/patología , Microscopía Electrónica , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/inmunología , Factores de Crecimiento Nervioso/ultraestructura , Infiltración Neutrófila , Daño por Reperfusión/patología
3.
PLoS Pathog ; 17(10): e1009967, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648590

RESUMEN

Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1ß release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Macrófagos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Yersiniosis/patología , Animales , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Piroptosis/fisiología , Yersiniosis/metabolismo
4.
Nature ; 591(7848): 131-136, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33472215

RESUMEN

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Apoptosis , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Muerte Celular/genética , Femenino , Humanos , Macrófagos , Masculino , Ratones , Mutación , Necrosis , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/genética , Multimerización de Proteína , Piroptosis/genética
6.
PLoS Biol ; 17(9): e3000354, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525186

RESUMEN

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1ß and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina/genética , Furanos/farmacología , Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Citocinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Indenos , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Dominios Proteicos , Sulfonas
7.
Sci Signal ; 12(582)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113851

RESUMEN

Gasdermin-D (GSDMD) is cleaved by caspase-1, caspase-4, and caspase-11 in response to canonical and noncanonical inflammasome activation. Upon cleavage, GSDMD oligomerizes and forms plasma membrane pores, resulting in interleukin-1ß (IL-1ß) secretion, pyroptotic cell death, and inflammatory pathologies, including periodic fever syndromes and septic shock-a plague on modern medicine. Here, we showed that IRF2, a member of the interferon regulatory factor (IRF) family of transcription factors, was essential for the transcriptional activation of GSDMD. A forward genetic screen with N-ethyl-N-nitrosourea (ENU)-mutagenized mice linked IRF2 to inflammasome signaling. GSDMD expression was substantially attenuated in IRF2-deficient macrophages, endothelial cells, and multiple tissues, which corresponded with reduced IL-1ß secretion and inhibited pyroptosis. Mechanistically, IRF2 bound to a previously uncharacterized but unique site within the GSDMD promoter to directly drive GSDMD transcription for the execution of pyroptosis. Disruption of this single IRF2-binding site abolished signaling by both the canonical and noncanonical inflammasomes. Together, our data illuminate a key transcriptional mechanism for expression of the gene encoding GSDMD, a critical mediator of inflammatory pathologies.


Asunto(s)
Factor 2 Regulador del Interferón/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión a Fosfato/genética , Piroptosis/genética , Transcripción Genética/genética , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Factor 2 Regulador del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal/genética , Activación Transcripcional/genética
8.
Science ; 362(6418): 1064-1069, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30361383

RESUMEN

Limited proteolysis of gasdermin D (GSDMD) generates an N-terminal pore-forming fragment that controls pyroptosis in macrophages. GSDMD is processed via inflammasome-activated caspase-1 or -11. It is currently unknown whether macrophage GSDMD can be processed by other mechanisms. Here, we describe an additional pathway controlling GSDMD processing. The inhibition of TAK1 or IκB kinase (IKK) by the Yersinia effector protein YopJ elicits RIPK1- and caspase-8-dependent cleavage of GSDMD, which subsequently results in cell death. GSDMD processing also contributes to the NLRP3 inflammasome-dependent release of interleukin-1ß (IL-1ß). Thus, caspase-8 acts as a regulator of GSDMD-driven cell death. Furthermore, this study establishes the importance of TAK1 and IKK activity in the control of GSDMD cleavage and cytotoxicity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 8/metabolismo , Interacciones Huésped-Patógeno , Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Peste/inmunología , Animales , Proteínas Bacterianas/metabolismo , Caspasa 8/genética , Muerte Celular , Humanos , Inflamasomas/inmunología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Peste/enzimología , Peste/patología , Proteolisis
9.
Immunity ; 49(3): 560-575.e6, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170812

RESUMEN

Signaling by Toll-like receptors (TLRs) on intestinal epithelial cells (IECs) is critical for intestinal homeostasis. To visualize epithelial expression of individual TLRs in vivo, we generated five strains of reporter mice. These mice revealed that TLR expression varied dramatically along the length of the intestine. Indeed, small intestine (SI) IECs expressed low levels of multiple TLRs that were highly expressed by colonic IECs. TLR5 expression was restricted to Paneth cells in the SI epithelium. Intestinal organoid experiments revealed that TLR signaling in Paneth cells or colonic IECs induced a core set of host defense genes, but this set did not include antimicrobial peptides, which instead were induced indirectly by inflammatory cytokines. This comprehensive blueprint of TLR expression and function in IECs reveals unexpected diversity in the responsiveness of IECs to microbial stimuli, and together with the associated reporter strains, provides a resource for further study of innate immunity.


Asunto(s)
Colitis/inmunología , Colon/patología , Mucosa Intestinal/fisiología , Intestino Delgado/patología , Células de Paneth/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Células Cultivadas , Colitis/inducido químicamente , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Homeostasis , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Receptor Cross-Talk , Transducción de Señal , Receptor Toll-Like 5/metabolismo
10.
J Exp Med ; 215(9): 2279-2288, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30135078

RESUMEN

Intracellular LPS sensing by caspase-4/5/11 triggers proteolytic activation of pore-forming gasdermin D (GSDMD), leading to pyroptotic cell death in Gram-negative bacteria-infected cells. Involvement of caspase-4/5/11 and GSDMD in inflammatory responses, such as lethal sepsis, makes them highly desirable drug targets. Using knock-in (KI) mouse strains, we herein provide genetic evidence to show that caspase-11 auto-cleavage at the inter-subunit linker is essential for optimal catalytic activity and subsequent proteolytic cleavage of GSDMD. Macrophages from caspase-11-processing dead KI mice (Casp11Prc D285A/D285A ) exhibit defective caspase-11 auto-processing and phenocopy Casp11-/- and caspase-11 enzymatically dead KI (Casp11Enz C254A/C254A ) macrophages in attenuating responses to cytoplasmic LPS or Gram-negative bacteria infection. GsdmdD276A/D276A KI macrophages also fail to cleave GSDMD and are hypo-responsive to inflammasome stimuli, confirming that the GSDMD Asp276 residue is a nonredundant and indispensable site for proteolytic activation of GSDMD. Our data highlight the role of caspase-11 self-cleavage as a critical regulatory step for GSDMD processing and response against Gram-negative bacteria.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Caspasas/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Proteolisis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Caspasas Iniciadoras , Técnicas de Sustitución del Gen , Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/patología , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato
11.
Sci Rep ; 8(1): 3788, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491424

RESUMEN

The NLRC4 inflammasome recognizes bacterial flagellin and components of the type III secretion apparatus. NLRC4 stimulation leads to caspase-1 activation followed by a rapid lytic cell death known as pyroptosis. NLRC4 is linked to pathogen-free auto-inflammatory diseases, suggesting a role for NLRC4 in sterile inflammation. Here, we show that NLRC4 activates an alternative cell death program morphologically similar to apoptosis in caspase-1-deficient BMDMs. By performing an unbiased genome-wide CRISPR/Cas9 screen with subsequent validation studies in gene-targeted mice, we highlight a critical role for caspase-8 and ASC adaptor in an alternative apoptotic pathway downstream of NLRC4. Furthermore, caspase-1 catalytically dead knock-in (Casp1 C284A KI) BMDMs genetically segregate pyroptosis and apoptosis, and confirm that caspase-1 does not functionally compete with ASC for NLRC4 interactions. We show that NLRC4/caspase-8-mediated apoptotic cells eventually undergo plasma cell membrane damage in vitro, suggesting that this pathway can lead to secondary necrosis. Unexpectedly, we found that DFNA5/GSDME, a member of the pore-forming gasdermin family, is dispensable for the secondary necrosis that follows NLRC4-mediated apoptosis in macrophages. Together, our data confirm the existence of an alternative caspase-8 activation pathway diverging from the NLRC4 inflammasome in primary macrophages.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas Adaptadoras de Señalización CARD/fisiología , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/fisiología , Caspasa 8/fisiología , Inflamasomas/metabolismo , Macrófagos/patología , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Genoma , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29150239

RESUMEN

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Asunto(s)
Apoptosis , Macrófagos/inmunología , Animales , Femenino , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/fisiología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 7/fisiología , Receptor Toll-Like 9/fisiología
13.
PLoS Pathog ; 12(12): e1006035, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911947

RESUMEN

Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1ß and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1ß/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1ß/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1ß activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1ß generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1ß/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Inflamasomas/inmunología , Peste/inmunología , Pirina/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Yersinia pestis/inmunología
14.
Nature ; 526(7575): 666-71, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26375259

RESUMEN

Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1ß processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1ß maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1ß secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Inflamasomas/metabolismo , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Caspasas Iniciadoras , Línea Celular , Femenino , Bacterias Gramnegativas/inmunología , Humanos , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Mutación/genética , Necrosis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sepsis/microbiología , Transducción de Señal/genética , Análisis de Supervivencia
15.
Immunol Rev ; 265(1): 75-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25879285

RESUMEN

As a front line of defense against pathogenic microbes, our body employs a primitive, yet highly sophisticated and potent innate immune response pathway collectively referred to as the inflammasome. Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury and mounting a coordinated molecular defense. For example, Gram-negative bacteria are specifically detected via a surveillance mechanism that involves activation of extracellular receptors such as Toll-like receptors (TLRs) followed by intracellular recognition and activation of pathways such as caspase-11 (caspase-4/5 in humans). Importantly, lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a strong trigger of these pathways. Extracellular LPS primarily stimulates TLR4, which can serve as a priming signal for expression of inflammasome components. Intracellular LPS can then trigger caspase-11-dependent inflammasome activation in the cytoplasm. Here, we briefly review the burgeoning caspase-11-dependent non-canonical inflammasome field, focusing mainly on the innate sensing of LPS.


Asunto(s)
Infecciones Bacterianas/metabolismo , Caspasas Iniciadoras/metabolismo , Caspasas/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Infecciones Bacterianas/inmunología , Caspasas/inmunología , Caspasas Iniciadoras/inmunología , Humanos , Inmunidad Innata , Lipopolisacáridos/inmunología , Ratones , Complejos Multiproteicos/inmunología , Transducción de Señal , Receptor Toll-Like 4/metabolismo
16.
Cell Host Microbe ; 15(2): 203-13, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24528866

RESUMEN

Pathogens utilize features of the host response as cues to regulate virulence gene expression. Salmonella enterica serovar Typhimurium (ST) sense Toll-like receptor (TLR)-dependent signals to induce Salmonella Pathogenicity Island 2 (SPI2), a locus required for intracellular replication. To examine pathogenicity in the absence of such cues, we evaluated ST virulence in mice lacking all TLR function (Tlr2(-/-)xTlr4(-/-)xUnc93b1(3d/3d)). When delivered systemically to TLR-deficient mice, ST do not require SPI2 and maintain virulence by replicating extracellularly. In contrast, SPI2 mutant ST are highly attenuated after oral infection of the same mice, revealing a role for SPI2 in the earliest stages of infection, even when intracellular replication is not required. This early requirement for SPI2 is abolished in MyD88(-/-)xTRIF(-/-) mice lacking both TLR- and other MyD88-dependent signaling pathways, a potential consequence of compromised intestinal permeability. These results demonstrate how pathogens use plasticity in virulence strategies to respond to different host immune environments.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Transducción de Señal , Receptores Toll-Like/inmunología , Animales , Ratones , Ratones Noqueados , Receptores Toll-Like/deficiencia , Virulencia
17.
Trends Cell Biol ; 24(6): 360-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24439965

RESUMEN

Over the past decade we have learned much about nucleic acid recognition by the innate immune system and in particular by Toll-like receptors (TLRs). These receptors localize to endosomal compartments where they are poised to recognize microbial nucleic acids. Multiple regulatory mechanisms function to limit responses to self DNA or RNA, and breakdowns in these mechanisms can contribute to autoimmune or inflammatory disorders. In this review we discuss our current understanding of the cell biology of TLRs involved in nucleic acid recognition and how localization and trafficking of these receptors regulates their function.


Asunto(s)
Endosomas/metabolismo , Receptores Toll-Like/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Transporte de Proteínas , Transducción de Señal
19.
Elife ; 2: e00291, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23426999

RESUMEN

UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.DOI:http://dx.doi.org/10.7554/eLife.00291.001.


Asunto(s)
Endosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores Toll-Like/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Transporte de Proteínas , Interferencia de ARN , Receptores Toll-Like/genética , Transfección
20.
Nature ; 457(7231): 906-9, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19060883

RESUMEN

Proteins that directly regulate tumour necrosis factor receptor (TNFR) signalling have critical roles in regulating cellular activation and survival. ABIN-1 (A20 binding and inhibitor of NF-kappaB) is a novel protein that is thought to inhibit NF-kappaB signalling. Here we show that mice deficient for ABIN-1 die during embryogenesis with fetal liver apoptosis, anaemia and hypoplasia. ABIN-1 deficient cells are hypersensitive to tumour necrosis factor (TNF)-induced programmed cell death, and TNF deficiency rescues ABIN-1 deficient embryos. ABIN-1 inhibits caspase 8 recruitment to FADD (Fas-associated death domain-containing protein) in TNF-induced signalling complexes, preventing caspase 8 cleavage and programmed cell death. Moreover, ABIN-1 directly binds polyubiquitin chains and this ubiquitin sensing activity is required for ABIN-1's anti-apoptotic activity. These studies provide insights into how ubiquitination and ubiquitin sensing proteins regulate cellular and organismal survival.


Asunto(s)
Apoptosis/fisiología , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/fisiología , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de Unión al ADN/química , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Jurkat , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA