Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
RNA ; 28(6): 878-894, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351812

RESUMEN

Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.


Asunto(s)
Sitios de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U1 , Motas Nucleares , Sitios de Empalme de ARN/genética , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
2.
Nucleic Acids Res ; 48(20): 11645-11663, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33091126

RESUMEN

While splicing has been shown to enhance nuclear export, it has remained unclear whether mRNAs generated from intronless genes use specific machinery to promote their export. Here, we investigate the role of the major nuclear pore basket protein, TPR, in regulating mRNA and lncRNA nuclear export in human cells. By sequencing mRNA from the nucleus and cytosol of control and TPR-depleted cells, we provide evidence that TPR is required for the efficient nuclear export of mRNAs and lncRNAs that are generated from short transcripts that tend to have few introns, and we validate this with reporter constructs. Moreover, in TPR-depleted cells reporter mRNAs generated from short transcripts accumulate in nuclear speckles and are bound to Nxf1. These observations suggest that TPR acts downstream of Nxf1 recruitment and may allow mRNAs to leave nuclear speckles and properly dock with the nuclear pore. In summary, our study provides one of the first examples of a factor that is specifically required for the nuclear export of intronless and intron-poor mRNAs and lncRNAs.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Proto-Oncogénicas/fisiología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Citoplasma/metabolismo , Humanos , Intrones , Motivos de Nucleótidos , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química
3.
Cell Rep ; 31(8): 107693, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460013

RESUMEN

The mammalian mRNA nuclear export process is thought to terminate at the cytoplasmic face of the nuclear pore complex through ribonucleoprotein remodeling. We conduct a stringent affinity-purification mass-spectrometry-based screen of the physical interactions of human RNA-binding E3 ubiquitin ligases. The resulting protein-interaction network reveals interactions between the RNA-binding E3 ubiquitin ligase MKRN2 and GLE1, a DEAD-box helicase activator implicated in mRNA export termination. We assess MKRN2 epistasis with GLE1 in a zebrafish model. Morpholino-mediated knockdown or CRISPR/Cas9-based knockout of MKRN2 partially rescue retinal developmental defects seen upon GLE1 depletion, consistent with a functional association between GLE1 and MKRN2. Using ribonomic approaches, we show that MKRN2 binds selectively to the 3' UTR of a diverse subset of mRNAs and that nuclear export of MKRN2-associated mRNAs is enhanced upon knockdown of MKRN2. Taken together, we suggest that MKRN2 interacts with GLE1 to selectively regulate mRNA nuclear export and retinal development.


Asunto(s)
Espectrometría de Masas/métodos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Retina/fisiopatología , Ribonucleoproteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Humanos , Pez Cebra
4.
Front Genet ; 9: 440, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386371

RESUMEN

Eukaryotes are divided into two major compartments: the nucleus where RNA is synthesized and processed, and the cytoplasm, where mRNA is translated into proteins. Although many different RNAs are made, only a subset is allowed access to the cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA). In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs) whose role in cell physiology has been a source of much investigation in the past few years. In addition, it is likely that many non-functional RNAs, which arise by spurious transcription and misprocessing of functional RNAs, are also retained in the nucleus and degraded. In this review, the main sequence features that dictate whether any particular mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm, are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that the spliceosome can help recruit export factors to the mature RNA, nuclear export does not require splicing. Indeed, most stable unspliced transcripts are well exported and associate with these same export factors in a splicing-independent manner. In contrast, nuclear retention is promoted by specialized cis-elements found in certain RNAs. This new understanding of the determinants of nuclear retention and cytoplasmic export provides a deeper understanding of how information flow is regulated in eukaryotic cells. Ultimately these processes promote the evolution of complexity in eukaryotes by shaping the genomic content through constructive neutral evolution.

5.
Cell Rep ; 21(13): 3740-3753, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281824

RESUMEN

It is well established that mRNAs encoding secretory or membrane-bound proteins are translated on the surface of the endoplasmic reticulum (ER). The extent to which mRNAs that encode cytosolic proteins associate with the ER, however, remains controversial. To address this question, we quantified the number of cytosolic protein-encoding mRNAs that co-localize with the ER using single-molecule RNA imaging in fixed and living cells. We found that a small but significant number of mRNAs that encode cytosolic proteins associate with the ER and show that this interaction is translation dependent. Furthermore, we demonstrate that cytosolic protein-encoding transcripts can remain on the ER with dwell times consistent with multiple rounds of translation and have higher ribosome occupancies than transcripts translated in the cytosol. These results advance our understanding of the diversity and dynamics of localized translation on the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Imagen Individual de Molécula , Animales , Línea Celular , Citoesqueleto/metabolismo , Citosol/metabolismo , Digitonina/farmacología , Retículo Endoplásmico/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Luciferasas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo
6.
Methods ; 126: 76-85, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28577934

RESUMEN

The nuclear export of mRNAs is an important yet little understood part of eukaryotic gene expression. One of the easiest methods for monitoring mRNA export in mammalian tissue culture cells is through the microinjection of DNA plasmids into the nucleus and monitoring the distribution of the transcribed product over time. Here we describe how to setup a microscope equipped with a micromanipulator used in cell microinjections, and we explain how to perform a nuclear mRNA export assay and obtain the nuclear export rate for any given mRNA.


Asunto(s)
Núcleo Celular/metabolismo , Microinyecciones/métodos , Transporte de ARN/fisiología , ARN Mensajero/metabolismo , Animales , Hibridación Fluorescente in Situ/métodos , Micromanipulación/métodos , Microscopía/métodos
7.
RNA ; 21(11): 1908-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26362019

RESUMEN

Most current models of mRNA nuclear export in vertebrate cells assume that an mRNA must have specialized signals in order to be exported from the nucleus. Under such a scenario, mRNAs that lack these specialized signals would be shunted into a default pathway where they are retained in the nucleus and eventually degraded. These ideas were based on the selective use of model mRNA reporters. For example, it has been shown that splicing promotes the nuclear export of certain model mRNAs, such as human ß-globin, and that in the absence of splicing, the cDNA-derived mRNA is retained in the nucleus and degraded. Here we provide evidence that ß-globin mRNA contains an element that actively retains it in the nucleus and degrades it. Interestingly, this nuclear retention activity can be overcome by increasing the length of the mRNA or by splicing. Our results suggest that contrary to many current models, the default pathway for most intronless RNAs is to be exported from the nucleus, unless the RNA contains elements that actively promote its nuclear retention.


Asunto(s)
Núcleo Celular/metabolismo , Empalme del ARN/genética , Transporte de ARN/fisiología , ARN Mensajero/metabolismo , Globinas beta/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Nucleares/metabolismo
8.
PLoS One ; 10(3): e0122743, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826302

RESUMEN

In eukaryotes, mRNAs are synthesized in the nucleus and then exported to the cytoplasm where they are translated into proteins. We have mapped an element, which when present in the 3'terminal exon or in an unspliced mRNA, inhibits mRNA nuclear export. This element has the same sequence as the consensus 5'splice site motif that is used to define the start of introns. Previously it was shown that when this motif is retained in the mRNA, it causes defects in 3'cleavage and polyadenylation and promotes mRNA decay. Our new data indicates that this motif also inhibits nuclear export and promotes the targeting of transcripts to nuclear speckles, foci within the nucleus which have been linked to splicing. The motif, however, does not disrupt splicing or the recruitment of UAP56 or TAP/Nxf1 to the RNA, which are normally required for nuclear export. Genome wide analysis of human mRNAs, lncRNA and eRNAs indicates that this motif is depleted from naturally intronless mRNAs and eRNAs, but less so in lncRNAs. This motif is also depleted from the beginning and ends of the 3'terminal exons of spliced mRNAs, but less so for lncRNAs. Our data suggests that the presence of the 5'splice site motif in mature RNAs promotes their nuclear retention and may help to distinguish mRNAs from misprocessed transcripts and transcriptional noise.


Asunto(s)
Núcleo Celular/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Transporte Biológico
9.
Front Genet ; 6: 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25674102

RESUMEN

The genomes of large multicellular eukaryotes are mostly comprised of non-protein coding DNA. Although there has been much agreement that a small fraction of these genomes has important biological functions, there has been much debate as to whether the rest contributes to development and/or homeostasis. Much of the speculation has centered on the genomic regions that are transcribed into RNA at some low level. Unfortunately these RNAs have been arbitrarily assigned various names, such as "intergenic RNA," "long non-coding RNAs" etc., which have led to some confusion in the field. Many researchers believe that these transcripts represent a vast, unchartered world of functional non-coding RNAs (ncRNAs), simply because they exist. However, there are reasons to question this Panglossian view because it ignores our current understanding of how evolution shapes eukaryotic genomes and how the gene expression machinery works in eukaryotic cells. Although there are undoubtedly many more functional ncRNAs yet to be discovered and characterized, it is also likely that many of these transcripts are simply junk. Here, we discuss how to determine whether any given ncRNA has a function. Importantly, we advocate that in the absence of any such data, the appropriate null hypothesis is that the RNA in question is junk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...