Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 11(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924525

RESUMEN

Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1-8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.

2.
Asian-Australas J Anim Sci ; 34(1): 134-142, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31011008

RESUMEN

Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using qRT-PCR. Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

3.
Animals (Basel) ; 10(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825581

RESUMEN

Weaned calves are susceptible to infectious diseases because of the stress and malnutrition that occurs during weaning. Therefore, the dairy industry requires effective feed additives to ameliorate stress responses and promote immunity. This study aimed to investigate the effects of hydrolyzed yeast (HY) supplementation on the growth performance, immune and stress parameters, and health status of calves after weaning. Eighteen Holstein calves were randomly assigned to two groups, either receiving a control calf starter or 0.2% HY calf starter from one week of age. All calves were weaned at six weeks of age as a stress challenge. The HY-fed calves had a significantly-higher body weight gain during the post-weaning period (kg/week) compared to the control. Cortisol levels at three days post-weaning (DPW) were significantly lower in the HY group than the control group. Calves fed HY had significantly-higher serum levels of tumor necrosis factor-α and interleukin-1ß at one DPW. The HY-fed calves also had higher concentrations of the acute-phase proteins, haptoglobin, serum amyloid A, and transferrin at one DPW. In addition, the diarrhea severity in HY-fed calves was milder after weaning compared to the control group. Our results indicate that HY supplementation reduces stress responses and may promote innate immunity in newly-weaned calves.

4.
Animals (Basel) ; 10(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492966

RESUMEN

Streptococcus bovis (S. bovis) is one of the critical initiators of acute acidosis in ruminants. Therefore, we aimed to develop and characterize the endolysin LyJH307, which can lyse ruminal S. bovis. We tested the bactericidal activity of recombinant LyJH307 against S. bovis JB1 under a range of pH, temperature, NaCl, and metal ion concentrations. In silico analyses showed that LyJH307 has a modular design with a distinct, enzymatically active domain of the NLPC/P60 superfamily at the N-terminal and a cell wall binding domain of the Zoocin A target recognition domain (Zoocin A_TRD) superfamily at the C-terminal. The lytic activity of LyJH307 against S. bovis JB1 was the highest at pH 5.5, and relatively higher under acidic, than under alkaline conditions. LyJH307 activity was also the highest at 39 °C, but was maintained between 25°C and 55°C. LyJH307 bactericidal action was retained under 0-500 mM NaCl. While the activity of LyJH307 significantly decreased on treatment with ethylenediaminetetraacetic acid (EDTA), it was only restored with supplementation of 10 mM Ca2+. Analyses of antimicrobial spectra showed that LyJH307 lysed Lancefield groups D (S. bovis group and Enterococcus faecalis) and H (S. sanguinis) bacteria. Thus, LyJH307 might help to prevent acute ruminal acidosis.

5.
J Anim Sci Technol ; 62(1): 31-42, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32082596

RESUMEN

The aim of this study was to investigate the effects of 3-nitrooxypropanol (NOP) on gas production, rumen fermentation, and animal performances depending on animal type using a meta-analysis approach. A database consisted of data from 14 studies, 18 experiments and 55 treatments. The supplementation of NOP linearly decreased methane (CH4) emissions [g/kg dry matter intake (DMI)] regardless of animal type and length of experimental period (beef, p < 0.0001, R 2 = 0.797; dairy, p = 0.0003, R 2 = 0.916; and long term, p < 0.0001, R 2 = 0.910). The total volatile fatty acids (VFA) concentration and the proportion of acetate, based on beef cattle database, were significantly decreased with increasing NOP supplementation (p = 0.0015, R 2 = 0.804 and p = 0.0003, R 2 = 0.918), whereas other individual VFAs was increased. Based on the dairy database, increasing levels of NOP supplementation linearly decreased proportion of acetate (p = 0.0284, R 2 = 0.769) and increased that of valerate (p = 0.0340, R 2 = 0.522), regardless of significant change on other individual VFAs. In animal performances, the DMI, from beef cattle database, tended to decrease when the levels of NOP supplementation increased (p = 0.0574, R 2 = 0.170), whereas there was no significant change on DMI from dairy cattle database. The NOP supplementation tended to decrease milk yield (p = 0.0606, R 2 = 0.381) and increase milk fat and milk protein (p = 0.0861, R 2 = 0.321, p = 0.0838, R 2 = 0.322). NOP is a viable candidate as a feed additive because of its CH4 mitigation effects, regardless of animal type and experiment period, without adverse effects on animal performances.

6.
Exp Ther Med ; 19(1): 214-222, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31853292

RESUMEN

Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.

7.
Asian-Australas J Anim Sci ; 33(3): 424-435, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31480163

RESUMEN

OBJECTIVE: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. METHODS: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. RESULTS: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. CONCLUSION: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

8.
Asian-Australas J Anim Sci ; 32(8): 1095-1103, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30744354

RESUMEN

OBJECTIVE: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme 1α (IRE1α)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates IRE1α signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. METHODS: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. RESULTS: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. CONCLUSION: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

9.
Asian-Australas J Anim Sci ; 32(6): 808-814, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30477290

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. METHODS: Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen (NH3-N), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. RESULTS: After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest NH3-N concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p< 0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. CONCLUSION: The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation.

10.
Asian-Australas J Anim Sci ; 32(3): 350-356, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30208686

RESUMEN

OBJECTIVE: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. METHODS: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. RESULTS: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide (H2O2)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. CONCLUSION: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

11.
Nutrients ; 10(6)2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29914089

RESUMEN

Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFß1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Flavonas/farmacología , FN-kappa B/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Adenocarcinoma/tratamiento farmacológico , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Antígenos CD36 , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Simulación por Computador , ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , FN-kappa B/genética , Invasividad Neoplásica , Unión Proteica , Factor de Transcripción STAT3/genética
12.
Int J Oncol ; 53(2): 877-885, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29901185

RESUMEN

The major hallmarks of tumor progression are angiogenesis, migration and metastasis. Among the components of Rhodiola rosea, salidroside (p­hydroxyphenethyl-ß­d-glucoside) is one of the most potent, and is present in all Rhodiola species. Recent data have revealed the anticancer effects of salidroside; however, the mechanism underlying its ability to inhibit tumor angiogenesis remains unknown. The present study aimed to analyze how salidroside affects major factors involved in breast cancer, and to elucidate its ability to inhibit angiogenesis and invasion. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis and migration, which interacts with matrix metalloproteinases (MMPs). Specifically, MMPs act as a downstream target for STAT3. Using western blotting and reverse transcription-quantitative polymerase chain reaction analysis, the present study demonstrated that treatment of MDA­MB 231 triple-negative breast cancer (TNBC) cells with salidroside led to inhibition of invasion and migration markers, and of STAT3 signaling. Furthermore, in vitro angiogenesis analyses in human umbilical vein endothelial cells confirmed the anti-angiogenic activity of salidroside. An electrophoretic mobility shift assay also demonstrated that salidroside may inhibit the DNA-binding activity of STAT3, preventing STAT3 from binding to a novel binding site of the MMP2 gene promoter. In conclusion, the present results demonstrated that salidroside may downregulate the STAT3 signaling pathway, and inhibit cell viability, migration and invasion through MMPs in breast cancer cells.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/farmacología , Glucósidos/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Invasividad Neoplásica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
13.
Int J Dev Biol ; 62(4-5): 341-345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29877574

RESUMEN

Initial embryological development in avian species, consisting of cleavage and area pellucida formation, occurs prior to oviposition. In chickens, the first lineage segregation is known to occur during the last 10 hours of intrauterine development, a finding which has primarily been identified on the basis of morphological perspectives. We traced the early expression of the transcription factors NANOG, POUV and EOMES at Eyal-Giladi and Kochav (EGK) stages VI through X using in situ hybridization. At EGK.VI, NANOG and EOMES were heterogeneously expressed in a salt-and-pepper manner. From EGK.VIII to EGK.X, NANOG- or EOMES-positive cells were predominantly located in the epiblast or area opaca regions, respectively. POUV-expressing cells were found in the upper layer at EGK.VIII. After oviposition, POUV mRNA was strongly expressed in the epiblast, but weakly expressed in the hypoblast at EGK.X. Furthermore, NANOG- and POUV-negative cells were located in the subgerminal cavity where layer reduction occurs during area pellucida formation. Those cells were larger and did not seem to contribute to epithelialization until EGK.X. Our results on the spatiotemporal expression of transcription factors contribute to a greater understanding of the dynamic process of intrauterine development in chickens.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nanog/metabolismo , Factores del Dominio POU/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Embrión de Pollo , Desarrollo Embrionario/fisiología , Mesodermo/embriología , Mesodermo/metabolismo , Proteína Homeótica Nanog/genética , Factores del Dominio POU/genética , Proteínas de Dominio T Box/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-29644074

RESUMEN

BACKGROUND: Acquisition of pluripotency by transcriptional regulatory factors is an initial developmental event that is required for regulation of cell fate and lineage specification during early embryonic development. The evolutionarily conserved core transcriptional factors regulating the pluripotency network in fishes, amphibians, and mammals have been elucidated. There are also species-specific maternally inherited transcriptional factors and their intricate transcriptional networks important in the acquisition of pluripotency. In avian species, however, the core transcriptional network that governs the acquisition of pluripotency during early embryonic development is not well understood. RESULTS: We found that chicken NANOG (cNANOG) was expressed in the stages between the pre-ovulatory follicle and oocyte and was continuously detected in Eyal-Giladi and Kochav stage I (EGK.I) to X. However, cPOUV was not expressed during folliculogenesis, but began to be detectable between EGK.V and VI. Unexpectedly, cSOX2 could not be detected during folliculogenesis and intrauterine embryonic development. Instead of cSOX2, cSOX3 was maternally inherited and continuously expressed during chicken intrauterine development. In addition, we found that the pluripotency-related genes such as cENS-1, cKIT, cLIN28A, cMYC, cPRDM14, and cSALL4 began to be dramatically upregulated between EGK.VI and VIII. CONCLUSION: These results suggest that chickens have a unique pluripotent circuitry since maternally inherited cNANOG and cSOX3 may play an important role in the initial acquisition of pluripotency. Moreover, the acquisition of pluripotency in chicken embryos occurs at around EGK.VI to VIII.

15.
Stem Cells Dev ; 25(1): 68-79, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26414995

RESUMEN

The timing and biological events associated with germ cell specification in chickens have not been determined yet. In this study, we report the origin of primordial germ cells (PGCs) and germ plasm dynamics through investigation of the expression of the chicken homolog of deleted in azoospermia-like (cDAZL) gene during germ cell specification. Asymmetric localization of germ plasm in the center of oocytes from preovulatory follicle stages leads to PGCs being formed in the center. During cleavage stages, DAZL expression pattern changes from a subcellular localization to a diffuse form before and after zygotic genome activation. Meanwhile, PGCs exhibit transcriptional active status during their specification. In addition, knockdown studies of cDAZL, which result in reduced proliferation, aberrant gene expression profiles, and PGC apoptosis in vitro, suggest its possible roles for PGC formation in chicken. In conclusion, DAZL expression reveals formation and initial positioning of PGCs in chickens.


Asunto(s)
Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Células Germinativas/citología , Proteínas de Unión al ARN/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Embrión de Pollo , Pollos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/fisiología , Masculino , Oocitos/citología , Oocitos/fisiología , Cigoto/citología , Cigoto/fisiología
16.
Biol Reprod ; 93(2): 36, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063873

RESUMEN

In avian species, primordial germ cells (PGCs) use the vascular system to reach their destination, the genital ridge. Because of this unique migratory route of avian germ cells, germline chimera production can be achieved via germ cell transfer into a blood vessel. This study was performed to establish an alternative germ cell-transfer system for producing germline chimeras by replacing an original host embryo with a donor embryo, while retaining the host extraembryonic tissue and yolk, before circulation. First, to test the migratory capacity of PGCs after embryo replacement, Korean Oge (KO) chick embryos were used to replace GFP transgenic chick embryos. Four days after replacement, GFP-positive cells were detected in the replaced KO embryonic gonads, and genomic DNA PCR analysis with the embryonic gonads demonstrated the presence of the GFP transgene. To produce an interspecific germline chimera, the original chick embryo proper was replaced with a quail embryo onto the chick yolk. To detect the gonadal PGCs in the 5.5-day-old embryonic gonads, immunohistochemistry was performed with monoclonal antibodies specific to either quail or chick PGCs, i.e., QCR1 and anti-stage-specific embryonic antigen-1 (SSEA-1), respectively. Both the QCR1-positive and SSEA-1-positive cells were detected in the gonads of replaced quail embryos. Forty percent of the PGC population in the quail embryos was occupied by chick extraembryonically derived PGCs. In conclusion, replacement of an embryo onto the host yolk before circulation can be applied to produce interspecies germline chimeras, and this germ cell-transfer technology is potentially applicable for reproduction of wild or endangered bird species.


Asunto(s)
Quimera/genética , Embrión de Mamíferos , Mutación de Línea Germinal/genética , Animales , Animales Modificados Genéticamente , Embrión de Pollo , ADN/genética , Yema de Huevo/fisiología , Células Germinativas , Gónadas/embriología , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Antígeno Lewis X/genética , Codorniz
17.
FASEB J ; 29(6): 2386-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690652

RESUMEN

Currently, transgenic animals have found a wide range of industrial applications and are invaluable in various fields of basic research. Notably, deposition of transgene-encoded proteins in the egg white (EW) of hens affords optimal production of genetically engineered biomaterials. In the present study, we developed a minisynthetic promoter modulating transgene transcription specifically in the hen's oviduct, and assayed the bioactivity of human epidermal growth factor (hEGF) driven by that promoter, after partial purification of epidermal growth factor (EGF) from transgenic hen eggs. Our minisynthetic promoter driving expression of chicken codon-optimized human epidermal growth factor (cEGF) features 2 consecutive estrogen response elements of the ovalbumin (OV) promoter, ligated with a 3.0 kb OV promoter region carrying OV regulatory elements, and a 5'-UTR. Subsequently, a 3'-UTR carrying the poly-A tail sequence of the OV gene was added after incorporation of the cEGF transgene. Finally, we partially purified cEGF from transgenic hen eggs and evaluated the biofunctional activities thereof in vitro and in vivo. In the in vitro assay, EW-derived hEGF exhibited a proliferative effect on HeLa cells similar to that of commercial hEGF. In the in vivo assay, compared to the nontreated control, transgenic hen egg-derived EGF afforded slightly higher levels of re-epithelialization (via fibroplasia) and neovascularization of wounded skin of miniature pigs than did the commercial material. In conclusion, transgenic hens may be used to produce genetically engineered bioactive biomaterials driven by an oviduct-specific minisynthetic promoter.


Asunto(s)
Pollos/metabolismo , Clara de Huevo/química , Factor de Crecimiento Epidérmico/metabolismo , Oviductos/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Pollos/genética , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Ovalbúmina/genética , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/lesiones , Porcinos , Porcinos Enanos , Cicatrización de Heridas/efectos de los fármacos
18.
Reproduction ; 149(2): 179-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25550524

RESUMEN

In most animals, primordial germ cells (PGCs) originate from an extragonadal region and migrate across the embryo to the gonads, where they differentiate and function. During their migration, PGCs move passively by morphogenetic movement of the embryo or move actively through signaling molecules. To uncover the underlying mechanism of first-phase PGC migration toward the germinal crescent in chickens, we investigated the spatial and temporal action of PGCs during primitive streak formation. Exogenously transplanted PGCs migrated toward the anterior region of the embryo and the embryonic gonads when they were transplanted into the subgerminal cavity, but not into the posterior marginal zone, in Eyal-Giladi and Kochav stage X embryos. These results indicate that for passive migration toward the anterior region the initial location of PGCs should be the central region. Notably, although PGCs and DF-1 cells migrated passively toward the anterior region, only PGCs migrated to the germinal crescent, where endogenous PGCs mainly reside, by active movement. In a live-imaging experiment with green fluorescence protein-expressing transgenic embryos, exogenous PGCs demonstrated markedly faster migration when they reached the anterior one-third of the embryo, while somatic cells showed epiblast movement with constant speed. Also, migrating PGCs exhibited successive contraction and expansion indicating their active migration. Our results suggest that chicken PGCs use sequential passive and active forces to migrate toward the germinal crescent.


Asunto(s)
Movimiento Celular , Embrión de Pollo/citología , Células Germinativas/fisiología , Animales , Embrión de Pollo/crecimiento & desarrollo , Células Germinativas/trasplante , Gónadas/citología , Gónadas/embriología
19.
Biochem Biophys Res Commun ; 455(3-4): 147-52, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25450677

RESUMEN

Myoblast differentiation is fundamental to the development and regeneration of skeletal muscle after injury or disease. MyoD family transcription factors play a key role to promote myoblast differentiation. In a screen for MyoD activators, we identified tetrahydropalmatine (THP), a natural compound isolated from Corydalis turtschaninovii. The treatment of C2C12 myoblasts with THP enhanced the level of MyoD, Myogenin and myosin heavy chain (MHC) proteins and the formation of larger multinucleated myotubes, compared to the control treatment. The THP treatment dramatically enhanced the activities of p38MAPK and Akt, the key promyogenic kinases which activate MyoD. The enhanced myoblast differentiation by THP treatment can be blocked by inhibition of p38MAPK or Akt by SB203580 or LY294002, respectively. In addition, THP treatment restored myotube formation of Cdo-depleted C2C12 cells through activation of p38MAPK. Moreover, THP enhanced the efficiency of trans-differentiation of 10T1/2 fibroblasts into myoblasts mediated by MyoD. These results indicate that THP has a promyogenic effect by upregulation of p38MAPK and Akt resulting in enhanced MyoD activation. Our findings suggest that THP has a potential as a therapeutic candidate to prevent fibrosis and improve muscle regeneration and repair.


Asunto(s)
Alcaloides de Berberina/química , Diferenciación Celular/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Proteína MioD/metabolismo , Mioblastos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Comunicación Celular , Cromonas/química , Activación Enzimática , Fibroblastos/citología , Fibrosis/patología , Imidazoles/química , Ratones , Morfolinas/química , Mioblastos/metabolismo , Miogenina/metabolismo , Piridinas/química , Regeneración , Sarcopenia/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...