Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
ACS Appl Mater Interfaces ; 16(12): 14995-15003, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487867

RESUMEN

Amorphous oxide semiconductors have been widely studied for various applications, including thin-film transistors (TFTs) for display backplanes and semiconductor memories. However, the inherent instability, limited mobility, and complexity of multicomponent oxide semiconductors for achieving high aspect ratios and conformality of cation distribution remain challenging. Indium-zinc oxide (IZO), known for its high mobility, also faces obstacles in instability resulting from high carrier doping density and low ionization energy. To address these issues and attain a balance between mobility and stability, adopting a highly aligned structure such as a c-axis aligned crystalline IGZO could be advantageous. However, limited studies have reported enhanced electrical performance using crystalline IZO, likely attributed to the high thermal stability of the individual components (In2O3 and ZnO). Here, we first propose a c-axis aligned composite (CAAC) IZO with superior TFT properties, including a remarkable performance of field-effect mobility (µFE) of 55.8 cm2/(V s) and positive-bias-temperature-stress stability of +0.16 V (2 MV/cm, 60 °C, 1 h), as well as a low subthreshold swing of 0.18 V/decade and hysteresis as 0.01 V, which could be obtained through optimization of growth temperature and composition using thermal atomic layer deposition. These results surpass those of TFTs based on nanocrystalline/polycrystalline/amorphous-IZO. We conducted a thorough investigation of CAAC-IZO and revealed that the growth temperature and cation distribution profoundly influence the crystal structure and device properties. Finally, we observed excellent compositional conformality and 97% step coverage of IZO on a high-aspect-ratio (HAR) structure with an aspect ratio reaching 40:1, which is highly promising for future applications. Our results include a detailed investigation of the influence of the crystal structure of IZO on the film and TFT performance and suggest an approach for future applications.

2.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38475009

RESUMEN

Detecting parcels accurately and efficiently has always been a challenging task when unloading from trucks onto conveyor belts because of the diverse and complex ways in which parcels are stacked. Conventional methods struggle to quickly and accurately classify the various shapes and surface patterns of unordered parcels. In this paper, we propose a parcel-picking surface detection method based on deep learning and image processing for the efficient unloading of diverse and unordered parcels. Our goal is to develop a systematic image processing algorithm that emphasises the boundaries of parcels regardless of their shape, pattern, or layout. The core of the algorithm is the utilisation of RGB-D technology for detecting the primary boundary lines regardless of obstacles such as adhesive labels, tapes, or parcel surface patterns. For cases where detecting the boundary lines is difficult owing to narrow gaps between parcels, we propose using deep learning-based boundary line detection through the You Only Look at Coefficients (YOLACT) model. Using image segmentation techniques, the algorithm efficiently predicts boundary lines, enabling the accurate detection of irregularly sized parcels with complex surface patterns. Furthermore, even for rotated parcels, we can extract their edges through complex mathematical operations using the depth values of the specified position, enabling the detection of the wider surfaces of the rotated parcels. Finally, we validate the accuracy and real-time performance of our proposed method through various case studies, achieving mAP (50) values of 93.8% and 90.8% for randomly sized and rotationally covered boxes with diverse colours and patterns, respectively.

3.
Foods ; 12(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37761172

RESUMEN

This study investigated the tenderizing and flavor-enhancing effects of koji, a fermented grain cultured with a single microorganism, on chicken breasts during curing. Chicken breasts were cured with different ingredients, including 4% (w/w) curing agent (GC), 5% (w/w) Aspergillus oryzae with rice (FR), A. oryzae with soybean (FS), and Bacillus subtilis with soybean (BS) for 4 h at 4 °C prior to cooking. After the superheated steam procedure, all samples were cooked in a convection oven, and their physicochemical properties were analyzed. Koji-treated samples exhibited significantly higher expressible moisture due to the degradation of the protein matrix (p < 0.05). Texture profile analysis showed that the tenderness of koji-treated samples was significantly higher than that of GC (p < 0.05). Furthermore, koji-treated samples were regarded as tenderer, and they were preferred over GC (p < 0.05) in the sensory evaluation. Principal attributes analysis revealed that the overall preference for koji-treated samples was highly correlated with umami, juiciness, and tenderness (p < 0.05). Overall, this study provides insights into applying koji as a potential curing treatment to improve the eating quality of chicken breasts. Koji can be used as a novel technology in the food industry to improve taste and tenderness simultaneously.

4.
Adv Sci (Weinh) ; 10(29): e2303018, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37559176

RESUMEN

Analog in-memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on-chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si-CMOS leakage currents, resulting in a deterioration of training accuracy. Here, a novel 6T1C synaptic device using only n-type indium gaIlium zinc oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor is proposed, allowing not only linear and symmetric weight update but also sufficient retention time and parallel on-chip training operations. In addition, an efficient and realistic training algorithm to compensate for any remaining device non-idealities such as drifting references and long-term retention loss is proposed, demonstrating the importance of device-algorithm co-optimization.

5.
Materials (Basel) ; 15(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407684

RESUMEN

Traditional fatigue fracture theory and practice focus principally on structural design. It is thus too conservative and inappropriate when used to predict the high-cycle fatigue life of dies used for metal forming, especially cold forging. We propose a novel mean stress correction model and diagram to predict the high-cycle fatigue lives of cold forging dies, which focuses on the upper part of the equivalent fatigue strength curve. Considering the features of die materials characterized by high yield strength and low ductility, a straight line is assumed for the tensile yield line. To the contrary, a general curve is used to represent the fatigue strength. They are interpolated, based on the distance ratio, when finding an appropriate equivalent fatigue strength curve at the mean stress and stress amplitude between the line and curve. The approach is applied to a well-defined literature example to verify its validity and shed light on the characteristics of die fatigue life. The approach is also applied to practical forging and useful qualitative results are obtained.

6.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35161956

RESUMEN

Since artificial intelligence (AI) was introduced into engineering fields, it has made many breakthroughs. Machine learning (ML) algorithms have been very commonly used in structural health monitoring (SHM) systems in the last decade. In this study, a vibration-based early stage of bolt loosening detection and identification technique is proposed using ML algorithms, for a motor fastened with four bolts (M8 × 1.5) to a stationary support. First, several cases with fastened and loosened bolts were established, and the motor was operated in three different types of working condition (800 rpm, 1000 rpm, and 1200 rpm), in order to obtain enough vibration data. Second, for feature extraction of the dataset, the short-time Fourier transform (STFT) method was performed. Third, different types of classifier of ML were trained, and a new test dataset was applied to evaluate the performance of the classifiers. Finally, the classifier with the greatest accuracy was identified. The test results showed that the capability of the classifier was satisfactory for detecting bolt loosening and identifying which bolt or bolts started to lose their preload in each working condition. The identified classifier will be implemented for online monitoring of the early stage of bolt loosening of a multi-bolt structure in future works.


Asunto(s)
Inteligencia Artificial , Vibración , Algoritmos , Análisis de Fourier , Aprendizaje Automático
7.
Plant Signal Behav ; 16(11): 1970449, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34498541

RESUMEN

Membrane localized transcription factors play essential roles in various plant developmental processes. The XVP/NAC003 protein is a NAC domain transcription factor associated with the plasma membrane and involved in the TDIF-PXY signaling during vascular development. We report here the mechanisms of XVP membrane localization and its nuclear translocation. Using a transient transformation approach, we found that XVP is associated with the plasma membrane through positively charged KR-rich regions. Mutagenesis studies found that the threonine amino acid at position 354 (T354) is critical for XVP translocation to the nucleus. In particular, the threonine to alanine mutation (T354A) resulted in a partial nucleus localization, while threonine to aspartic acid (T354D) mutation showed no effect on protein localization, indicating that dephosphorylation at T354 may serve as a nucleus translocation signal. This research sheds new light on the nucleus partitioning of plasma membrane-associated transcription factors.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fosforilación/genética , Factores de Transcripción/metabolismo , Membrana Celular/genética , Núcleo Celular/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción/genética
8.
Appl Bionics Biomech ; 2020: 8872362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178333

RESUMEN

The present study emphasized on the optimal design of a motorized prosthetic leg and evaluation of its performance for stair walking. Developed prosthetic leg includes two degrees of freedom on the knee and ankle joint designed using a virtual product development process for better stair walking. The DC motor system was introduced to imitate gait motion in the knee joint, and a spring system was applied at the ankle joint to create torque and flexion angle. To design better motorized prosthetic leg, unnecessary mass was eliminated via a topology optimization process under a complex walking condition in a boundary considered condition and aluminum alloy for lower limb and plastic nylon through 3D printing foot which were used. The structural safety of a developed prosthetic leg was validated via finite element analysis under a variety of walking conditions. In conclusion, the motorized prosthetic leg was optimally designed while maintaining structural safety under boundary conditions based on the human walking data, and its knee motions were synchronized with normal human gait via a PD controller. The results from this study about powered transfemoral prosthesis might help amputees in their rehabilitation process. Furthermore, this research can be applied to the area of biped robots that try to mimic human motion.

9.
New Phytol ; 226(1): 59-74, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31660587

RESUMEN

Vascular stem cell maintenance is regulated by a peptide signaling involving Tracheary Element Differentiation Inhibitory Factor (TDIF) and Receptor TDR/PXY (Phloem intercalated with Xylem) and co-receptor BAK1 (BRI1-associated receptor kinase1). The regulatory mechanism of this signaling pathway is largely unknown despite its importance in stem cell maintenance in the vascular meristem. We report that activation of a NAC domain transcription factor XVP leads to precocious Xylem differentiation, disruption of Vascular Patterning, and reduced cell numbers in vascular bundles. We combined molecular and genetic studies to elucidate the biological functions of XVP. XVP is expressed in the cambium, localized on the plasma membrane and forms a complex with TDIF co-receptors PXY-BAK1. Simultaneous mutation of XVP and its close homologous NAC048 enhances TDIF signaling. In addition, genetics analysis indicated that XVP promotes xylem differentiation through a known master regulator VASCULAR-RELATED NAC-DOMAIN6 (VND6). Expression analyses indicate that XVP activates CLAVATA3/ESR (CLE)-related protein 44 (CLE44), the coding gene of TDIF, whereas TDIF represses XVP expression, suggesting a feedback mechanism. Therefore, XVP functions as a negative regulator of the TDIF-PXY module and fine-tunes TDIF signaling in vascular development. These results shed new light on the mechanism of vascular stem cell maintenance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo
10.
Opt Express ; 27(18): 25410-25419, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510413

RESUMEN

In this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ. The two p-type molecules get a cyanine-like character with intense and sharp absorption in the green color by adjusting the strength of their donating and accepting parts and by choosing a selenophene unit as a π-linker. When combined to C60, the green-wavelength EQE reaches 70% in a complete device composed of two transparent electrodes. Finally, the optical simulation shows the good color-balance performance of hybrid full-color image sensor without an additional filter by using the developed green OPD as the top-layer in stacked device architecture.

11.
J Biol Chem ; 294(46): 17570-17592, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562246

RESUMEN

The 26S proteasome is an essential protease that selectively eliminates dysfunctional and short-lived regulatory proteins in eukaryotes. To define the composition of this proteolytic machine in plants, we tagged either the core protease (CP) or the regulatory particle (RP) sub-complexes in Arabidopsis to enable rapid affinity purification followed by mass spectrometric analysis. Studies on proteasomes enriched from whole seedlings, with or without ATP needed to maintain the holo-proteasome complex, identified all known proteasome subunits but failed to detect isoform preferences, suggesting that Arabidopsis does not construct distinct proteasome sub-types. We also detected a suite of proteasome-interacting proteins, including likely orthologs of the yeast and mammalian chaperones Pba1, Pba2, Pba3, and Pba4 that assist in CP assembly; Ump1 that helps connect CP half-barrels; Nas2, Nas6, and Hsm3 that assist in RP assembly; and Ecm29 that promotes CP-RP association. Proteasomes from seedlings exposed to the proteasome inhibitor MG132 accumulated assembly intermediates, reflecting partially built proteasome sub-complexes associated with assembly chaperones, and the CP capped with the PA200/Blm10 regulator. Genetic analyses of Arabidopsis UMP1 revealed that, unlike in yeast, this chaperone is essential, with mutants lacking the major UMP1a and UMP1b isoforms displaying a strong gametophytic defect. Single ump1 mutants were hypersensitive to conditions that induce proteotoxic, salt and osmotic stress, and also accumulated several proteasome assembly intermediates, consistent with its importance for CP construction. Insights into the chaperones reported here should enable study of the assembly events that generate the 26S holo-proteasome in Arabidopsis from the collection of 64 or more subunits.


Asunto(s)
Arabidopsis/genética , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteómica , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Espectrometría de Masas , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Plant Physiol ; 181(2): 595-608, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377726

RESUMEN

NAM, ATAF1/2 and CUC2 (NAC) domain transcription factors function as master switches in regulating secondary cell wall (SCW) biosynthesis in Arabidopsis (Arabidopsis thaliana) stems. Despite the importance of these NACs in fiber development, the upstream signal is still elusive. Using a large-scale mutant screening, we identified a dominant activation-tagging mutant, fiberless-d (fls-d), showing defective SCW development in stem fibers, similar to that of the nac secondary wall thickening promoting factor1-1 (nst1-1)nst3-3 double mutant. Overexpression of LATERAL ORGAN BOUNDARIES DOMAIN29 (LBD29) is responsible for the fls-d mutant phenotypes. By contrast, loss-of-function of LBD29, either in the dominant repression transgenic lines or in the transfer-DNA (T-DNA) insertion mutant lbd29-1, enhanced SCW development in fibers. Genetic analysis and transgenic studies demonstrated LBD29 depends on master regulators in mediating SCW biosynthesis, specifically NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), NST2, and NST3. Increasing indole-3-acetic acid (IAA) levels, either in stem tissues above a N-1-naphthylphthalamic acid-treated region or in plants directly sprayed with IAA, inhibits fiber wall thickening. The inhibition effect of naphthylphthalamic acid treatment and exogenous IAA application depends on a known auxin signaling pathway involving AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and LBD29. These results demonstrate auxin is upstream of LBD29 in repressing NAC master regulators, and therefore shed new light on the regulation of SCW biosynthesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis , Factores de Transcripción/fisiología
14.
Soft Matter ; 15(19): 3854-3863, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31062802

RESUMEN

Controlled evaporative self-assembly of semiconducting polymers has mostly been studied on 2-dimensional flat substrates. In this study, we reported capillary-assisted evaporative self-assembly of poly(3-hexylthiophene 2,5-diyl) (P3HT) into 3-D micro-ring patterns through the stick-slip phenomenon within a 3-dimensional cylinder. We deconvoluted the well-known two-step stick-slip phenomenon into three regimes through in situ monitoring of the P3HT self-assembly process using a high-speed camera: pinning and deposition; depinning and slip; and retraction regimes. Furthermore, we investigated the effects of various parameters associated with the self-assembly, including polymer concentration, tilt angle, magnetic field, and evaporation temperature, thus achieving self-assembled microarchitectures with diverse dimensions ranging from dots to lines and networks. The self-assembled microstructures were analyzed qualitatively and quantitatively by evaluating the fast Fourier transform image, surface coverage, fractal dimension and lacunarity of the micropatterns.

15.
Nanoscale ; 11(12): 5693-5704, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30865198

RESUMEN

Controlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers. Compared with cells on a flat glass surface, cells on beads with the highest curvature harbored retroviral DNAs at genomic sites near transcriptional start sites and CpG islands during infections at more than 50% higher frequencies. Furthermore, cells on the same type of bead layers contained retroviral DNAs in the genomic regions near cis-regulatory elements at frequencies that were 2.6-fold higher than that of cells on flat glass surfaces. Systems-level genetic network analysis showed that for cells on nanobeads with the highest curvature, the genes that would be affected by cis-regulatory elements near the retroviral integration sites perform biological functions related to chromatin structure and antiviral activities. Our unexpected observations suggest that novel engineering approaches based on materials with specific nanotopography can improve control over viral events.


Asunto(s)
ADN Viral/metabolismo , Virus de la Leucemia Murina/genética , Nanotecnología/métodos , Islas de CpG , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Nanoestructuras/química , Dióxido de Silicio/química
16.
RSC Adv ; 9(20): 11272-11280, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520257

RESUMEN

Magnetically active helical soft robots were synthesized to achieve tether-less manipulation of the magnetomotility in order to avoid the on-board weight penalty and the distance restrictions originating from connection lines. Magnetic iron particles were dispersed in elastomeric polymer matrices and pre-cured in a two-dimensional film geometry, followed by post-curing in a three-dimensional (3D) helical geometry. To manipulate movements of the 3D helical soft robots, an external magnetic field was applied by placing a neodymium permanent magnet on a motorized linear translation stage. The 3D helical geometry of the soft robots enabled efficient maneuvering with local deformations and a low magnetic threshold for actuation by the introduction of the rolling resistance unlike the absence of the local deformations observed for rigid 3D coils. As rolling is induced by the action and reaction with the substrate, the helix angle causes divergence of the soft robots from linear translational motility. In order to regulate the directionality of rolling and to minimize temporal and spatial deviation of the soft robots, the magnitude of the magnetic flux density and the velocity of the permanent magnet on the linear stage were investigated.

17.
Plant Cell Physiol ; 60(1): 188-201, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329113

RESUMEN

The Aurora kinases are serine/threonine kinases with conserved functions in mitotic cell division in eukaryotes. In Arabidopsis, Aurora kinases play important roles in primary meristem maintenance, but their functions in vascular development are still elusive. We report a dominant xdi-d mutant showing the xylem development inhibition (XDI) phenotype. Gene identification and transgenic overexpression experiments indicated that the activation of the Arabidopsis Aurora 2 (AtAUR2) gene is responsible for the XDI phenotype. In contrast, the aur1-2 aur2-2 double mutant plants showed enhanced differentiation of phloem and xylem cells, indicating that the Aurora kinases negatively affect xylem differentiation. The transcript levels of key regulatory genes in vascular cell differentiation, i.e. ALTERED PHLOEM DEVELOPMENT (APL), VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7, were higher in the aur1-2 aur2-2 double mutant and lower in xdi-d mutants compared with the wild-type plants, further supporting the functions of α-Aurora kinases in vascular development. Gene mutagenesis and transgenic studies showed that protein phosphorylation and substrate binding, but not protein dimerization and ubiquitination, are critical for the biological function of AtAUR2. These results indicate that α-Aurora kinases play key roles in vascular cell differentiation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Aurora Quinasas/metabolismo , Haz Vascular de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reguladores , Prueba de Complementación Genética , Mutación/genética , Fenotipo , Floema/crecimiento & desarrollo , Floema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/ultraestructura
18.
Mol Ther Methods Clin Dev ; 12: 58-70, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30534579

RESUMEN

The unique ability of retroviruses to integrate genes into host genomes is of great value for long-term expression in gene therapy, but only when integrations occur at safe genomic sites. To reap the benefit of using retroviruses without severe detrimental effects, we developed several murine leukemia virus (MLV)-based gammaretroviral vectors with safer integration patterns by perturbing the structure of the integrase via insertion of DNA-binding zinc-finger domains (ZFDs) into an internal position of the enzyme. ZFD insertion significantly reduced the inherent, strong MLV integration preference for genomic regions near transcriptional start sites (TSSs), which are the most dangerous spots. The altered retroviral integration pattern was related to increased formation of residual primer-binding site sequences at the 3' end of proviruses. Several ZFD insertion mutants showed lower frequencies of integrations into the TSS genome regions when having the residual primer-binding site sequences in the proviruses. Our findings not only can extend the use of retroviruses in biomedical applications, but also provide a glimpse into the mechanisms underlying retroviral integration.

19.
Plant Cell ; 28(6): 1279-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27194708

RESUMEN

Proteotoxic stress, which is generated by the accumulation of unfolded or aberrant proteins due to environmental or cellular perturbations, can be mitigated by several mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis, such as the 26S proteasome. Using RNA-seq analyses combined with chemical inhibitors or mutants that induce proteotoxic stress by impairing 26S proteasome capacity, we defined the transcriptional network that responds to this stress in Arabidopsis thaliana This network includes genes encoding core and assembly factors needed to build the complete 26S particle, alternative proteasome capping factors, enzymes involved in protein ubiquitylation/deubiquitylation and cellular detoxification, protein chaperones, autophagy components, and various transcriptional regulators. Many loci in this proteasome-stress regulon contain a consensus cis-element upstream of the transcription start site, which was previously identified as a binding site for the NAM/ATAF1/CUC2 78 (NAC78) transcription factor. Double mutants disrupting NAC78 and its closest relative NAC53 are compromised in the activation of this regulon and notably are strongly hypersensitive to the proteasome inhibitors MG132 and bortezomib. Given that NAC53 and NAC78 homo- and heterodimerize, we propose that they work as a pair in activating the expression of numerous factors that help plants survive proteotoxic stress and thus play a central regulatory role in maintaining protein homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulón/genética , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Bortezomib/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Regulón/efectos de los fármacos , Factores de Transcripción/genética
20.
Vaccine ; 34(11): 1343-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26851733

RESUMEN

Cold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation. Here, we analyzed the genetic mutations and their phenotypic contribution in the X-31 ca strain, a recently developed alternative CAIV donor strain. During the cold-adaptation of its parental X-31 virus, various numbers of sequence changes were accumulated in all six internal genes. Phenotypic analysis with single-gene and multiple-gene reassortant viruses suggests that NP gene makes the largest contribution to the cold-adapted (ca) and temperature-sensitive (ts) characters, while the remaining other internal genes also impart attenuation characters with varying degrees. A balanced contribution of all internal genes to the attenuation suggests that X-31 ca could serve as an ideal master donor strain for CAIVs preventing influenza epidemics and pandemics.


Asunto(s)
Frío , Virus de la Influenza A/genética , Vacunas contra la Influenza , Virus Reordenados/genética , Adaptación Biológica/genética , Sustitución de Aminoácidos , Animales , Perros , Femenino , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Fenotipo , Alineación de Secuencia , Vacunas Atenuadas , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...