Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 41(48): 5160-5175, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271030

RESUMEN

Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Farmacología en Red , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Diferenciación Celular/genética , Factores de Transcripción/genética
2.
PLoS One ; 13(10): e0205254, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30307989

RESUMEN

Cancer cells, including in chronic myeloid leukemia (CML), depend on the hypoxic response to persist in hosts and evade therapy. Accordingly, there is significant interest in drugging cancer-specific hypoxic responses. However, a major challenge in leukemia is identifying differential and druggable hypoxic responses between leukemic and normal cells. Previously, we found that arginase 2 (ARG2), an enzyme of the urea cycle, is overexpressed in CML but not normal progenitors. ARG2 is a target of the hypoxia inducible factors (HIF1-α and HIF2-α), and is required for the generation of polyamines which are required for cell growth. We therefore explored if the clinically-tested arginase inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) would be effective against leukemic cells under hypoxic conditions. Remarkably, nor-NOHA effectively induced apoptosis in ARG2-expressing cells under hypoxia but not normoxia. Co-treatment with nor-NOHA overcame hypoxia-mediated resistance towards BCR-ABL1 kinase inhibitors. While nor-NOHA itself is promising in targeting the leukemia hypoxic response, we unexpectedly found that its anti-leukemic activity was independent of ARG2 inhibition. Genetic ablation of ARG2 using CRISPR/Cas9 had no effect on the viability of leukemic cells and their sensitivity towards nor-NOHA. This discrepancy was further evidenced by the distinct effects of ARG2 knockouts and nor-NOHA on cellular respiration. In conclusion, we show that nor-NOHA has significant but off-target anti-leukemic activity among ARG2-expressing hypoxic cells. Since nor-NOHA has been employed in clinical trials, and is widely used in studies on endothelial dysfunction, immunosuppression and metabolism, the diverse biological effects of nor-NOHA must be cautiously evaluated before attributing its activity to ARG inhibition.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Arginasa/antagonistas & inhibidores , Arginina/análogos & derivados , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Arginasa/genética , Arginasa/metabolismo , Arginina/farmacología , Arginina/uso terapéutico , Sistemas CRISPR-Cas/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Enzimas , Estudios de Factibilidad , Técnicas de Inactivación de Genes , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA