Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001844

RESUMEN

The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.

2.
J Biomech Eng ; 146(5)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456810

RESUMEN

This paper introduces a hands-on laboratory exercise focused on assembling and testing a hybrid soft-rigid active finger prosthetic for biomechanical and biomedical engineering (BME) education. This hands-on laboratory activity focuses on the design of a myoelectric finger prosthesis, integrating mechanical, electrical, sensor (i.e., inertial measurement units (IMUs), electromyography (EMG)), pneumatics, and embedded software concepts. We expose students to a hybrid soft-rigid robotic system, offering a flexible, modifiable lab activity that can be tailored to instructors' needs and curriculum requirements. All necessary files are made available in an open-access format for implementation. Off-the-shelf components are all purchasable through global vendors (e.g., DigiKey Electronics, McMaster-Carr, Amazon), costing approximately USD 100 per kit, largely with reusable elements. We piloted this lab with 40 undergraduate engineering students in a neural and rehabilitation engineering upper year elective course, receiving excellent positive feedback. Rooted in real-world applications, the lab is an engaging pedagogical platform, as students are eager to learn about systems with tangible impacts. Extensions to the lab, such as follow-up clinical (e.g., prosthetist) and/or technical (e.g., user-device interface design) discussion, are a natural means to deepen and promote interdisciplinary hands-on learning experiences. In conclusion, the lab session provides an engaging journey through the lifecycle of the prosthetic finger research and design process, spanning conceptualization and creation to the final assembly and testing phases.


Asunto(s)
Miembros Artificiales , Ingeniería Biomédica , Humanos , Ingeniería Biomédica/educación , Extremidad Superior , Mano , Curriculum
3.
Prosthet Orthot Int ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019000

RESUMEN

BACKGROUND: Vertical displacement of the residual limb within transtibial prosthetic socket, often known as "pistoning" or downward movement, may lead to skin breakdowns and ulcers. Downward movement is particularly difficult to self-manage for diabetic individuals living with amputation because of diminished sensation in the residual limb from peripheral neuropathy. Therefore, a customizable sensor at the distal end that can alert the users when high-risk downward movement and pistoning occurs is urgently needed. OBJECTIVES: Presented herein for the first time is a lightweight, inexpensive sensing system inspired by soft robotics that can detect the occurrence and severity of downward movement at the distal end. METHODS: The sensing system consists of a multilayered torus-shaped balloon, allowing easy integration with pin-lock socket systems. The design allows sensing of vertical displacement without imparting high reaction forces back onto the distal end. A benchtop compression tester was used to characterize system performance. Systematic and parametric benchtop tests were conducted to examine the sensor's physical characteristics. Long-term (24-h) stability of the sensor was also recorded. RESULTS: Compared with water, air was determined to be a better medium with a higher linear full-scale span (FSS) because of its compressible nature. Repeatable 0.5-mm vertical displacements yielded a linear (>0.99 R2) FSS of 4.5 mm and a sensitivity of 0.8 kPa/mm. The sensing system is highly precise, with as low as 1% FSS total error band and average hysteresis of 2.84% of FSS. Over 24 h, a 4% FSS drift was observed. CONCLUSION: Sensing system characteristics, coupled with low-cost, customizable fabrication, indicates promising performance for daily use to notify and alert transtibial prosthetic users of downward movement and/or pistoning.

4.
MAbs ; 15(1): 2253788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675979

RESUMEN

The clinical successes of immune checkpoint blockade have invigorated efforts to activate T cell-mediated responses against cancer. Targeting members of the PVR family, consisting of inhibitory receptors TIGIT, CD96, and CD112R, has been an active area of clinical investigation. In this study, the binding interactions and molecular assemblies of the PVR family receptors and ligands have been assessed in vitro. Furthermore, the anti-TIGIT monoclonal antibody BMS-986207 crystal structure in complex with TIGIT was determined and shows that the antibody binds an epitope that is commonly targeted by the CD155 ligand as well as other clinical anti-TIGIT antibodies. In contrast to previously proposed models, where TIGIT outcompetes costimulatory receptor CD226 for binding to CD155 due to much higher affinity (nanomolar range), our data rather suggest that PVR family members all engage in interactions with relatively weak affinity (micromolar range), including TIGIT and CD155 interactions. Thus, TIGIT and other PVR inhibitory receptors likely elicit immune suppression via increased surface expression rather than inherent differences in affinity. This work provides an improved foundational understanding of the PVR family network and mechanistic insight into therapeutic antibody intervention.


Asunto(s)
Neoplasias , Receptores Inmunológicos , Humanos , Linfocitos T/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Ligandos
5.
J Am Chem Soc ; 145(18): 10015-10021, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104712

RESUMEN

Caspases are a family of cysteine-dependent proteases with important cellular functions in inflammation and apoptosis, while also implicated in human diseases. Classical chemical tools to study caspase functions lack selectivity for specific caspase family members due to highly conserved active sites and catalytic machinery. To overcome this limitation, we targeted a non-catalytic cysteine residue (C264) unique to caspase-6 (C6), an enigmatic and understudied caspase isoform. Starting from disulfide ligands identified in a cysteine trapping screen, we used a structure-informed covalent ligand design to produce potent, irreversible inhibitors (3a) and chemoproteomic probes (13-t) of C6 that exhibit unprecedented selectivity over other caspase family members and high proteome selectivity. This approach and the new tools described will enable rigorous interrogation of the role of caspase-6 in developmental biology and in inflammatory and neurodegenerative diseases.


Asunto(s)
Caspasas , Cisteína , Humanos , Caspasa 6 , Apoptosis , Inhibidores de Cisteína Proteinasa/farmacología
6.
Anal Chem ; 95(8): 3922-3931, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791402

RESUMEN

Characterization of antibody binding epitopes is an important factor in therapeutic drug discovery, as the binding site determines and drives antibody pharmacology and pharmacokinetics. Here, we present a novel application of carbene chemical footprinting with mass spectrometry for identification of antibody binding epitopes at the single-residue level. Two different photoactivated diazirine reagents provide complementary labeling information allowing structural refinement of the antibody binding interface. We applied this technique to map the epitopes of multiple MICA and CTLA-4 antibodies and validated the findings with X-ray crystallography and yeast surface display epitope mapping. The characterized epitopes were used to understand biolayer interferometry-derived competitive binding results at the structural level. We show that carbene footprinting provides fast and high-resolution epitope information critical in the antibody selection process and enables mechanistic understanding of function to accelerate the drug discovery process.


Asunto(s)
Anticuerpos , Metano , Epítopos/química , Mapeo Epitopo/métodos
7.
Biomicrofluidics ; 16(3): 034107, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35783680

RESUMEN

Residual limb volume fluctuation and the resulting contact pressures are some of the key factors leading to skin ulcerations, suboptimal prosthetic functioning, pain, and diminishing quality of life of transtibial amputees. Self-management of socket fit is complicated by peripheral neuropathy, reducing the perception of pressure and pain in the residual limb. We introduce a novel proof-of-concept for a transtibial prosthetic socket liner with the potential to dynamically adjust the fit between the limb and socket. The core of the technology is a small air microfluidic chip (10 cm3 and 10 g) with 10 on-chip valves that enable sequential pressurizing of 10 actuators in custom sizes to match the pressures required by the residual limb's unique anatomy. The microfluidic chip largely reduced the number of electromechanical solenoid valves needed for sequential control of 10 actuators (2 instead of 10 valves), resulting in the reduction of the required power, size, mass, and cost of the control box toward an affordable and wearable prosthetic socket. Proof-of-concept testing demonstrated that the applied pressures can be varied in the desired sequence and to redistribute pressure. Future work will focus on integrating the system with biofidelic prosthetic sockets and residual limb models to investigate the ability to redistribute pressure away from pressure-sensitive regions (e.g., fibular head) to pressure tolerant areas. Overall, the dynamic prosthesis socket liner is very encouraging for creating a dynamic socket fit system that can be seamlessly integrated with existing socket fabrication methods for managing residual limb volume fluctuations and contact pressure.

8.
MAbs ; 14(1): 2024642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35192429

RESUMEN

Although therapeutically efficacious, ipilimumab can exhibit dose-limiting toxicity that prevents maximal efficacious clinical outcomes and can lead to discontinuation of treatment. We hypothesized that an acidic pH-selective ipilimumab (pH Ipi), which preferentially and reversibly targets the acidic tumor microenvironment over the neutral periphery, may have a more favorable therapeutic index. While ipilimumab has pH-independent CTLA-4 affinity, pH Ipi variants have been engineered to have up to 50-fold enhanced affinity to CTLA-4 at pH 6.0 compared to pH 7.4. In hCTLA-4 knock-in mice, these variants have maintained anti-tumor activity and reduced peripheral activation, a surrogate marker for toxicity. pH-sensitive therapeutic antibodies may be a differentiating paradigm and a novel modality for enhanced tumor targeting and improved safety profiles.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Concentración de Iones de Hidrógeno , Ipilimumab/uso terapéutico , Ratones , Índice Terapéutico
9.
MAbs ; 13(1): 1979800, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595996

RESUMEN

The molecular interactions of mouse CD96 to CD155 ligand and to two surrogate antibodies have been investigated. Biophysical and structural studies demonstrate that CD96 forms a homodimer but assembles as 1:1 heterodimeric complexes with CD155 or with one of the surrogate antibodies, which compete for the same binding interface. In comparison, the other surrogate antibody binds across the mouse CD96 dimer and recognizes a quaternary epitope spanning both protomers to block exposure of the ligand-binding site. This study reveals different blocking mechanisms and modalities of these two antibodies and may provide insight into the functional effects of antibodies against CD96.


Asunto(s)
Antígenos CD , Inmunoglobulinas , Animales , Anticuerpos Bloqueadores , Sitios de Unión , Ratones , Dominios Proteicos
10.
Nat Biotechnol ; 35(7): 667-671, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28604661

RESUMEN

Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/ultraestructura , Modelos Químicos , Simulación del Acoplamiento Molecular , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Sitios de Unión , Unión Proteica
11.
Science ; 355(6325): 597-602, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28183972

RESUMEN

Cysteine can be specifically functionalized by a myriad of acid-base conjugation strategies for applications ranging from probing protein function to antibody-drug conjugates and proteomics. In contrast, selective ligation to the other sulfur-containing amino acid, methionine, has been precluded by its intrinsically weaker nucleophilicity. Here, we report a strategy for chemoselective methionine bioconjugation through redox reactivity, using oxaziridine-based reagents to achieve highly selective, rapid, and robust methionine labeling under a range of biocompatible reaction conditions. We highlight the broad utility of this conjugation method to enable precise addition of payloads to proteins, synthesis of antibody-drug conjugates, and identification of hyperreactive methionine residues in whole proteomes.


Asunto(s)
Aziridinas/química , Cisteína/química , Inmunoconjugados/química , Metionina/química , Actinas/química , Edición Génica , Técnicas de Inactivación de Genes , Metionina/análisis , Mutación , Oxidación-Reducción , Fosfopiruvato Hidratasa/genética , Dominios Proteicos , Proteínas/química , Proteómica/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Hipoclorito de Sodio/farmacología
12.
Cell Host Microbe ; 21(1): 23-34, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28017661

RESUMEN

Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Animales , Línea Celular , Perros , Galactanos/metabolismo , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Especificidad de la Especie
13.
J Am Chem Soc ; 138(23): 7353-64, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27191344

RESUMEN

Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Ácidos Sulfúricos/metabolismo , Tirosina/química , Sitios de Unión , Técnicas de Cultivo de Célula , Cristalografía por Rayos X , Proteínas de Unión a Ácidos Grasos/química , Flúor , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Células MCF-7 , Receptores de Ácido Retinoico/química , Ácidos Sulfúricos/química
14.
PLoS Pathog ; 12(2): e1005409, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26845438

RESUMEN

Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas Portadoras/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Modelos Moleculares , Mutación , Replicación Viral
15.
Science ; 349(6254): 1301-6, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26303961

RESUMEN

The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Ratones , Multimerización de Proteína , Estructura Secundaria de Proteína
16.
J Virol ; 89(14): 7417-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25926650

RESUMEN

We engineered a disulfide-stabilized influenza virus hemagglutinin (HA) trimer, termed HA3-SS, by introducing cysteine residues into the HA stem to covalently bridge the three protomers. HA3-SS has increased thermostability compared to wild-type HA, and binding of head- and stem-targeted antibodies (Abs) is preserved; only minor structural changes are found in the vicinity of the additional disulfide. This platform has been applied to H1 and H3 HAs and provides prospects for design of intact, stabilized influenza virus HA immunogens.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Disulfuros , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Orthomyxoviridae/inmunología , Antígenos Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Orthomyxoviridae/genética , Unión Proteica , Estabilidad Proteica , Temperatura
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 145-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664786

RESUMEN

Influenza viruses remain a persistent challenge to human health owing to their inherent ability to evade the immune response by antigenic drift. However, the discovery of broadly neutralizing antibodies (bnAbs) against divergent viruses has sparked renewed interest in a universal influenza vaccine and novel therapeutic opportunities. Here, a crystal structure at 1.70 Å resolution is presented of the Fab of the human antibody CH65, which has broad neutralizing activity against a range of seasonal H1 isolates. Previous studies proposed that affinity maturation of this antibody lineage pre-organizes the complementarity-determining region (CDR) loops into an energetically favorable HA-bound conformation. Indeed, from the structural comparisons of free and HA-bound CH65 presented here, the CDR loops, and in particular the heavy-chain CDR3, adopt the same conformations in the free and bound forms. Thus, these findings support the notion that affinity maturation of the CH65 lineage favorably preconfigures the CDR loops for high-affinity binding to influenza hemagglutinin.


Asunto(s)
Anticuerpos Neutralizantes/química , Apoproteínas/química , Fragmentos Fab de Inmunoglobulinas/química , Virus de la Influenza A/inmunología , Cristalografía por Rayos X , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Modelos Moleculares , Unión Proteica
18.
Curr Top Microbiol Immunol ; 386: 323-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25037260

RESUMEN

Influenza hemagglutinin (HA) is the major surface glycoprotein on influenza viruses and mediates viral attachment and subsequent fusion with host cells. The HA is the major target of the immune response, but due to its high level of variability, as evidenced by substantial antigenic diversity, it had been historically considered to elicit only a narrow, strain-specific antibody response. However, a recent explosion in the discovery of broadly neutralizing antibodies (bnAbs) to influenza virus has identified two major supersites of vulnerability on the HA through structural characterization of HA-antibody complexes. These commonly targeted epitopes are involved with receptor binding as well as the fusion machinery and, hence, are functionally conserved and less prone to mutation. These bnAbs can neutralize viruses by blocking infection or the spread of infection by preventing progeny release. Structural analyses of these bnAbs show they exhibit striking similarities and trends in recognition of the HA and use recurring recognition motifs, despite substantial differences in their germline genes. This information can be utilized in design of novel therapeutics as well as in immunogens for improved vaccines with greater breadth and efficacy.


Asunto(s)
Anticuerpos Antivirales/inmunología , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Orthomyxoviridae/inmunología , Reacciones Cruzadas , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos
19.
Proc Natl Acad Sci U S A ; 111(49): 17624-9, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422458

RESUMEN

Broadly neutralizing antibodies (bnAbs) targeting the trimer apex of HIV envelope are favored candidates for vaccine design and immunotherapy because of their great neutralization breadth and potency. However, methods of isolating bnAbs against this site have been limited by the quaternary nature of the epitope region. Here we report the use of a recombinant HIV envelope trimer, BG505 SOSIP.664 gp140, as an affinity reagent to isolate quaternary-dependent bnAbs from the peripheral blood mononuclear cells of a chronically infected donor. The newly isolated bnAbs, named "PGDM1400-1412," show a wide range of neutralization breadth and potency. One of these variants, PGDM1400, is exceptionally broad and potent with cross-clade neutralization coverage of 83% at a median IC50 of 0.003 µg/mL. Overall, our results highlight the utility of BG505 SOSIP.664 gp140 as a tool for the isolation of quaternary-dependent antibodies and reveal a mosaic of antibody responses against the trimer apex within a clonal family.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Secuencia de Aminoácidos , Linfocitos B/inmunología , Secuencia de Bases , Reacciones Cruzadas , Epítopos/química , Variación Genética , Infecciones por VIH/inmunología , Humanos , Memoria Inmunológica , Concentración 50 Inhibidora , Leucocitos Mononucleares/citología , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Pruebas de Neutralización , Biblioteca de Péptidos , Filogenia , Pliegue de Proteína , Proteínas Recombinantes/inmunología , Homología de Secuencia de Aminoácido
20.
J Virol ; 88(23): 13580-92, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25210195

RESUMEN

UNLABELLED: Due to continuous changes to its antigenic regions, influenza viruses can evade immune detection and cause a significant amount of morbidity and mortality around the world. Influenza vaccinations can protect against disease but must be annually reformulated to match the current circulating strains. In the development of a broad-spectrum influenza vaccine, the elucidation of conserved epitopes is paramount. To this end, we designed an immunization strategy in mice to boost the humoral response against conserved regions of the hemagglutinin (HA) glycoprotein. Of note, generation and identification of broadly neutralizing antibodies that target group 2 HAs are rare and thus far have yielded only a few monoclonal antibodies (MAbs). Here, we demonstrate that mouse MAb 9H10 has broad and potent in vitro neutralizing activity against H3 and H10 group 2 influenza A subtypes. In the mouse model, MAb 9H10 protects mice against two divergent mouse-adapted H3N2 strains, in both pre- and postexposure administration regimens. In vitro and cell-free assays suggest that MAb 9H10 inhibits viral replication by blocking HA-dependent fusion of the viral and endosomal membranes early in the replication cycle and by disrupting viral particle egress in the late stage of infection. Interestingly, electron microscopy reconstructions of MAb 9H10 bound to the HA reveal that it binds a similar binding footprint to MAbs CR8020 and CR8043. IMPORTANCE: The influenza hemagglutinin is the major antigenic target of the humoral immune response. However, due to continuous antigenic changes that occur on the surface of this glycoprotein, influenza viruses can escape the immune system and cause significant disease to the host. Toward the development of broad-spectrum therapeutics and vaccines against influenza virus, elucidation of conserved regions of influenza viruses is crucial. Thus, defining these types of epitopes through the generation and characterization of broadly neutralizing monoclonal antibodies (MAbs) can greatly assist others in highlighting conserved regions of hemagglutinin. Here, we demonstrate that MAb 9H10 that targets the hemagglutinin stalk has broadly neutralizing activity against group 2 influenza A viruses in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/uso terapéutico , Humanos , Inmunización Pasiva , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/terapia , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...