Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biomech ; 172: 112178, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38959820

RESUMEN

Reactive lower limb muscle function during walking plays a key role in balance recovery following tripping, and ultimately fall prevention. The objective of this study was to evaluate muscle and joint function in the recovery limb during balance recovery after trip-based perturbations during walking. Twenty-four healthy participants underwent gait analysis while walking at slow, moderate and fast speeds over level, uphill and downhill inclines. Trip perturbations were performed randomly during stance, and lower limb kinematics, kinetics, and muscle contribution to the acceleration of the whole-body centre of mass (COM) were computed pre- and post-perturbation in the recovery limb. Ground slope and walking speed had a significant effect on lower limb joint angles, net joint moments and muscle contributions to support and propulsion during trip recovery (p < 0.05). Specifically, increasing walking speed during trip recovery significantly reduced hip extension in the recovery limb and increased knee flexion, particularly when walking uphill and at higher walking speeds (p < 0.05). Gluteus maximus played a critical role in providing support and forward propulsion of the body during trip recovery across all gait speeds and ground inclinations. This study provides a mechanistic link between muscle action, joint motion and COM acceleration during trip recovery, and underscores the potential of increased walking speed and ground inclination to increase fall risk, particularly in individuals prone to falling. The findings of this study may provide guidelines for targeted exercise therapy such as muscle strengthening for fall prevention.

2.
Sci Rep ; 14(1): 4421, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388724

RESUMEN

Although humans are well-adapted to negotiating sloped terrain, balance recovery after a disturbance on slopes is poorly understood. This study investigated how slope affects recovery from unanticipated simulated trips and slips. Eighteen healthy young adults walked on a split-belt treadmill at 1.25 m/s and three slope angles (downhill: - 8°; level: 0°; uphill: + 8°), with slip- and trip-like perturbations applied randomly at heel-strike. We evaluated balance recovery using whole-body angular momentum (WBAM) and perturbation response (PR), for which larger PR values indicate greater deviation of the margin of stability from baseline, therefore, greater destabilisation after perturbation. Overall, trips were more destabilising than slips, producing larger PR and greater range and integral of WBAM across all tested slopes, most significantly in the sagittal plane. Contrary to expectation, sagittal-plane PR post-trip was greatest for level walking and smallest for downhill walking. Heightened vigilance during downhill walking may explain this finding. Recovery strategy in both frontal and sagittal planes was consistent across all slopes and perturbation types, characterized by a wider and shorter first recovery step, with trips requiring the greatest step adjustment. Our findings advance understanding of the robustness of human locomotion and may offer insights into fall prevention interventions.


Asunto(s)
Locomoción , Caminata , Humanos , Adulto Joven , Fenómenos Biomecánicos , Caminata/fisiología , Prueba de Esfuerzo , Marcha/fisiología , Equilibrio Postural/fisiología
3.
Gait Posture ; 107: 1-7, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703781

RESUMEN

BACKGROUND: Successful recovery following a perturbation during walking depends on a quick well-coordinated response from the body. As such, lower limb joint power and work provide critical information characterizing the success of the recovery after a perturbation. Therefore, this study aimed to investigate lower-limb joint power and the relative contribution of each joint to the total leg work during the recovery following a trip-induced perturbation. METHODS: Twenty-four young male volunteers walked at 1.1 m/s for 2 min, followed by two unexpected perturbations induced by rapidly decelerating the right belt of the split-belt treadmill. Joint moments and powers were calculated using an inverse dynamic approach. Joint work was found as the integral of joint power with respect to time. Statistical parametric mapping (SPM) and paired-sample t-tests were used to compare joint power and work between recovery and unperturbed steps. RESULTS: Compared to normal walking, recovery from the trip required a significant increase in both positive (+27 %, p < 0.05) and negative(+28 %,p < 0.05) leg work. During unperturbed walking, the ankle was the key contributor to both positive (ankle=50 %, hip=34 %, and knee=15 %) and negative (ankle=62 %, knee=32 %, and hip=6 %) leg work. During recovery, the knee eccentric work significantly increased (+83 %,p < 0.05) making it the main contributor to the negative leg work (knee=46 %, ankle=45 %, and hip=9 %). The hip positive work also increased during recovery (+62.7 %, p < 0.05), while ankle and the knee positive work remained unchanged. SIGNIFICANCE: These findings highlight the importance of eccentric work of the knee, and concentric work of the hip joint during recovery from trip-induced perturbations. The additional mechanical demand of producing and absorbing more power during recovery is primarily imposed on the knee and hip, rather than the ankle. This new insight into the specific functions of lower-limb joints during recovery from trip-induced perturbations has important implications for the design of targeted fall prevention interventions.


Asunto(s)
Marcha , Extremidad Inferior , Masculino , Humanos , Marcha/fisiología , Caminata/fisiología , Articulación de la Rodilla/fisiología , Tobillo/fisiología , Articulación del Tobillo/fisiología , Articulación de la Cadera/fisiología , Fenómenos Biomecánicos
4.
Front Sports Act Living ; 5: 1153229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533583

RESUMEN

Background: Reactive lower limb muscle function during walking plays a role in balance, stability, and ultimately fall prevention. The objective of this study was to evaluate muscle and joint function used to regain balance after trip-based perturbations during walking. Research question: How are lower limb muscles used to recover from external tripping during walking? Method: The dominant legs of 20 healthy adult participants with similar athletic backgrounds were tripped using a split-belt instrumented treadmill. High- and medium-intensity trips were simulated by deceleration of the dominant leg at initial contact from the speed of 1.1 m/s to 0 m/s and back to 1.1 m/s in 0.4 s and 0.8 s, respectively. Lower limb kinematics, kinetics, and muscle forces following perturbations were computed to pre-perturbation values using statistical parametric mapping (SPM) paired t-test. Results: A greater ankle dorsiflexion angle (mean difference: 5.3°), ankle plantar flexion moment (mean difference: 0.6Nm/kg), and gastrocnemius and soleus muscle forces (mean difference: 4.27N/kg and 13.56N/kg for GAS and SOL, respectively) were observed post-perturbation step despite the magnitude of the perturbation. Significance: This study concludes that adequate timely response of ankle function during a compensatory step is required for a successful recovery after tripping during walking in young healthy adults. Weakness in plantar flexors suggests insufficient ankle moments, which ultimately can result in falls. The findings of this paper can be used as a reference for the joint moments and range of motion needed to recover trips in the design of assistive devices. In addition to that, clinicians can use the estimated values of muscle forces and the pattern of muscle activities to design targeted training in fall prevention among the elderly.

5.
J Orthop Surg Res ; 18(1): 360, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194079

RESUMEN

Open reduction and internal fixation of pelvic acetabular fractures are challenging due to the limited surgical exposure from surrounding abdominal tissue. There have been a number of recent trials using metallic 3D-printed pelvic fracture plates to simplify and improve various elements of these fracture fixation surgeries; however, the amount of time and accuracy involved in the design and implantation of customised plates have not been well characterised. This study recorded the amount of time related to the design, manufacture and implantation of six customised fracture plates for five cadaveric pelvic specimens with acetabular fracture, while manufacturing, and surgical accuracy was calculated from computed tomography imaging. Five of the fracture plates were designed within 9.5 h, while the plate for a pelvis with a pre-existing fracture plate took considerably longer (20.2 h). Manufacturing comprised 3D-printing the plates in Ti6Al4V with a sintered laser melting (SLM) 3D-printer and post-processing (heat treatment, smoothing, tapping threads). The manufacturing times varied from 27.0 to 32.5 h, with longer times related to machining a thread for locking-head screws with a multi-axis computer numerical control (CNC) mill. For the surface of the plate in contact with the bone, the root-mean-square errors of the print varied from 0.10 to 0.49 mm. The upper range of these errors was likely the result of plate designs that were relatively long with thin cross-sections, a combination that gives rise to high thermal stresses when using a SLM 3D-printer. A number of approaches were explored to control the trajectories of locking or non-locking head screws including guides, printed threads or hand-taps; however, the plate with CNC-machined threads was clearly the most accurate with screw angulation errors of 2.77° (range 1.05-6.34°). The implanted position of the plates was determined visually; however, the limited surgical exposure and lack of intra-operative fluoroscopy in the laboratory led to high inaccuracies (translational errors of 1.74-13.00 mm). Plate mal-positioning would lead to increased risk of surgical injury due to misplaced screws; hence, it is recommended that technologies that can control plate positioning such as fluoroscopy or alignment guides need to be implemented into customised plate design and implantation workflow. Due to the plate misalignment and the severe nature of some acetabular fractures comprising numerous small bone fragments, the acetabular reduction exceeded the clinical limit of 2 mm for three pelvises. Although our results indicate that customised plates are unsuitable for acetabular fractures comprising six or more fragments, confirmation of this finding with a greater number of specimens is recommended. The times, accuracy and suggested improvements in the current study may be used to guide future workflows aimed at producing customised pelvic fracture plates for greater numbers of patients.


Asunto(s)
Fracturas Óseas , Fracturas de Cadera , Fracturas de la Columna Vertebral , Humanos , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Fijación Interna de Fracturas/métodos , Impresión Tridimensional , Pelvis/lesiones , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Acetábulo/lesiones , Cadáver , Placas Óseas
6.
Front Vet Sci ; 9: 923356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847629

RESUMEN

Fatigue-induced subchondral bone (SCB) injury is common in racehorses. Understanding how subchondral microstructure and microdamage influence mechanical properties is important for developing injury prevention strategies. Mechanical properties of the disto-palmar third metacarpal condyle (MCIII) correlate poorly with microstructure, and it is unknown whether the properties of other sites within the metacarpophalangeal (fetlock) joint are similarly complex. We aimed to investigate the mechanical and structural properties of equine SCB from specimens with minimal evidence of macroscopic disease. Three sites within the metacarpophalangeal joint were examined: the disto-palmar MCIII, disto-dorsal MCIII, and proximal sesamoid bone. Two regions of interest within the SCB were compared, a 2 mm superficial and an underlying 2 mm deep layer. Cartilage-bone specimens underwent micro-computed tomography, then cyclic compression for 100 cycles at 2 Hz. Disto-dorsal MCIII specimens were loaded to 30 MPa (n = 10), while disto-palmar MCIII (n = 10) and proximal sesamoid (n = 10) specimens were loaded to 40 MPa. Digital image correlation determined local strains. Specimens were stained with lead-uranyl acetate for volumetric microdamage quantification. The dorsal MCIII SCB had lower bone volume fraction (BVTV), bone mineral density (BMD), and stiffness compared to the palmar MCIII and sesamoid bone (p < 0.05). Superficial SCB had higher BVTV and lower BMD than deeper SCB (p < 0.05), except at the palmar MCIII site where there was no difference in BVTV between depths (p = 0.419). At all sites, the deep bone was stiffer (p < 0.001), although the superficial to deep gradient was smaller in the dorsal MCIII. Hysteresis (energy loss) was greater superficially in palmar MCIII and sesamoid (p < 0.001), but not dorsal MCIII specimens (p = 0.118). The stiffness increased with cyclic loading in total cartilage-bone specimens (p < 0.001), but not in superficial and deep layers of the bone, whereas hysteresis decreased with the cycle for all sites and layers (p < 0.001). Superficial equine SCB is uniformly less stiff than deeper bone despite non-uniform differences in bone density and damage levels. The more compliant superficial layer has an important role in energy dissipation, but whether this is a specific adaptation or a result of microdamage accumulation is not clear.

7.
Biomech Model Mechanobiol ; 21(4): 1317-1324, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35713823

RESUMEN

Personalised fracture plates manufactured using 3D printing offer an improved treatment option for unstable pelvic ring fractures that may not be adequately secured using off-the-shelf components. To design fracture plates that secure the bone fragments in their pre-fracture positions, the fractures must be reduced virtually using medical imaging-based reconstructions, a time-consuming process involving segmentation and repositioning of fragments until surface congruency is achieved. This study compared statistical shape models (SSMs) and contralateral mirroring as automated methods to reconstruct the hemipelvis using varying amounts of bone surface geometry. The training set for the geometries was obtained from pelvis CT scans of 33 females. The root-mean-squared error (RMSE) was quantified across the entire surface of the hemipelvis and within specific regions, and deviations of pelvic landmarks were computed from their positions in the intact hemipelvis. The reconstruction of the entire hemipelvis surfaced based on contralateral mirroring had an RMSE of 1.21 ± 0.29 mm, whereas for SSMs based on the entire hemipelvis surface, the RMSE was 1.11 ± 0.29 mm, a difference that was not significant (p = 0.32). Moreover, all hemipelvis reconstructions based on the full or partial bone geometries had RMSEs and landmark deviations from contralateral mirroring that were significantly lower (p < 0.05) or statistically equivalent to the SSMs. These results indicate that contralateral mirroring tends to be more accurate than SSMs for reconstructing unilateral pelvic fractures. SSMs may still be a viable method for hemipelvis fracture reconstruction in situations where contralateral geometries are not available, such as bilateral pelvic factures, or for highly asymmetric pelvic anatomies.


Asunto(s)
Fracturas Óseas , Huesos Pélvicos , Placas Óseas , Femenino , Fracturas Óseas/cirugía , Humanos , Modelos Estadísticos , Huesos Pélvicos/diagnóstico por imagen , Tomografía Computarizada por Rayos X
8.
J Orthop Surg Res ; 17(1): 224, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35399075

RESUMEN

BACKGROUND: Lumbar interbody fusion (LIF) is an established surgical intervention for patients with leg and back pain secondary to disc herniation or degeneration. Interbody fusion involves removal of the herniated or degenerated disc and insertion of interbody devices with bone grafts into the remaining cavity. Extensive research has been conducted on operative complications such as a failure of fusion or non-union of the vertebral bodies. Multiple factors including surgical, implant, and patient factors influencing the rate of complications have been identified. Patient factors include age, sex, osteoporosis, and patient anatomy. Complications can also be influenced by the interbody cage design. The geometry of the bony endplates as well as their corresponding material properties guides the design of interbody cages, which vary considerably across patients with spinal disorders. However, studies on the effects of such variations on the rate of complications are limited. Therefore, this study aimed to perform a systematic review of lumbar endplate geometry and material property factors in LIF failure. METHODS: Search keywords included 'factor/cause for spinal fusion failure/cage subsidence/cage migration/non-union', 'lumbar', and 'interbody' in electronic databases PubMed and Scopus with no limits on year of publication. RESULTS: In total, 1341 articles were reviewed, and 29 articles were deemed suitable for inclusion. Adverse events after LIF, such as cage subsidence, cage migration, and non-union, resulted in fusion failure; hence, risk factors for adverse events after LIF, notably those associated with lumbar endplate geometry and material properties, were also associated with fusion failure. Those risk factors were associated with shape, concavity, bone mineral density and stiffness of endplate, segmental disc angle, and intervertebral disc height. CONCLUSIONS: This review demonstrated that decreased contact areas between the cage and endplate, thin and weak bony endplate as well as spinal diseases such as spondylolisthesis and osteoporosis are important causes of adverse events after LIF. These findings will facilitate the selection and design of LIF cages, including customised implants based on patient endplate properties.


Asunto(s)
Osteoporosis , Enfermedades de la Columna Vertebral , Fusión Vertebral , Espondilolistesis , Humanos , Vértebras Lumbares/cirugía , Región Lumbosacra , Fusión Vertebral/métodos , Espondilolistesis/cirugía
9.
Biomech Model Mechanobiol ; 21(1): 249-259, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837584

RESUMEN

Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.


Asunto(s)
Articulación del Hombro , Fenómenos Biomecánicos , Húmero/anatomía & histología , Húmero/diagnóstico por imagen , Modelos Anatómicos , Modelos Estadísticos , Escápula/anatomía & histología , Articulación del Hombro/anatomía & histología , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía
10.
J Clin Med ; 10(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830616

RESUMEN

Reverse total shoulder arthroplasty (RTSA) is an established treatment for elderly patients with irreparable rotator cuff tears, complex proximal humerus fractures, and revision arthroplasty; however, with the increasing indications for RTSA over the last decade and younger implant recipients, post-operative complications have become more frequent, which has driven advances in computational modeling and simulation of reverse shoulder biomechanics. The objective of this study was to provide a review of previously published studies that employed computational modeling to investigate complications associated with RTSA. Models and applications were reviewed and categorized into four possible complications that included scapular notching, component loosening, glenohumeral joint instability, and acromial and scapular spine fracture, all of which remain a common cause of significant functional impairment and revision surgery. The computational shoulder modeling studies reviewed were primarily used to investigate the effects of implant design, intraoperative component placement, and surgical technique on postoperative shoulder biomechanics after RTSA, with the findings ultimately used to elucidate and mitigate complications. The most significant challenge associated with the development of computational models is in the encapsulation of patient-specific anatomy and surgical planning. The findings of this review provide a basis for future direction in computational modeling of the reverse shoulder.

11.
Gait Posture ; 86: 287-291, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33831744

RESUMEN

BACKGROUND: Biomechanical analyses primarily focus on physical aspects of human movement; however, it is not understood how walking is affected while simultaneously performing a demanding cognitive task - a form of Cognitive-Motor Interference (CMI). CMI occurs when performance of a primary task (e.g. walking) is affected following the introduction of a cognitive task (e.g. visual search). RESEARCH QUESTION: Would Visuo Motor Targeting Task (VMTT) impair visual search performance and reduce the margin of stability (MoS) at higher gait speeds? METHODS: A protocol was developed to investigate responses of the neuromuscular system while performing a complex visual search task. The Computer Assisted Rehabilitation ENvironment (CAREN, Motekforce Link, Netherlands) system was used for the experimental design. Twenty male participants (Age = 24.2 ± 2.5yrs, Weight = 70.3 ± 10.6 kg, Height = 178.0 ± 9.1 cm) located and pointed towards targets in complex scenes while walking at different gait speeds (0.55, 1.11 and 1.67 m/s.) or while stationary. The cost of visual search during a Visuo Motor Targeting Task (VMTT) was based on the pointing accuracy during the visual search task. RESULTS: A two-way repeated measure ANOVA showed that MoS in the ML direction significantly improved with increased gait speed and during the visual search task. There was also a significant interaction with MoS improvement being greater during the visual search task at high gait speeds. MoS in the AP was only affected by gait speed. Visual performance and cost of visual search were enhanced during walking versus standing up to 25 %. SIGNIFICANCE: This study investigated CMI at different gait speeds, which may have implications in postural control, falls and other neurological disorders.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Cognición/fisiología , Marcha/fisiología , Equilibrio Postural/fisiología , Adulto , Humanos , Masculino , Adulto Joven
12.
J Mech Behav Biomed Mater ; 118: 104457, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780859

RESUMEN

Underbody blast attacks of military vehicles by improvised explosives have resulted in high incidence of lumbar spine fractures below the thorocolumbar junction in military combatants. Fracture risk curves related to vertical loading at individual lumbar spinal levels can be used to assess the protective ability of new injury mitigation equipment. The objectives of this study were to derive fracture risk curves for the lumbar spine under high rate compression and identify how specimen-specific attributes and lumbar spinal level may influence fracture risk. In this study, we tested a sample of three-vertebra specimens encompassing all spinal levels between T12 to S1 in high-rate axial compression. Each specimen was tested with a non-injurious load, followed by a compressive force sufficient to induce vertebral body fracture. During testing, bone fracture was identified using measurements from acoustic emission sensors and changes in load cell readings. Following testing, the fractures were assessed using computed tomographic (CT) imaging. The CT images showed isolated fractures of trabecular bone, or fractures involving both cortical and trabecular bone. Results from the compressive force measurements in conjunction with a survival analysis demonstrated that the compressive force corresponding to fracture increased inferiorly as a function of lumbar spinal level. The axial rigidity (EA) measured at the mid-plane of the centre vertebra or the volumetric bone mineral density (vBMD) of the vertebral body trabecular bone most greatly influenced fracture risk. By including these covariates in the fracture risk curves, no other variables significantly affected fracture risk, including the lumbar spinal level. The fracture risk curves presented in this study may be used to assess the risk of injury at individual lumbar vertebra when exposed to dynamic axial compression.


Asunto(s)
Fracturas Óseas , Fracturas de la Columna Vertebral , Densidad Ósea , Hueso Esponjoso , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Fracturas de la Columna Vertebral/diagnóstico por imagen
13.
Orthop J Sports Med ; 9(2): 2325967120981641, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33614810

RESUMEN

BACKGROUND: Anterior cruciate ligament (ACL) injuries most commonly occur after a perturbation. Prophylactic knee braces (PKBs) are off-the-shelf braces designed to prevent and reduce the severity of knee injuries during sports, yet their effectiveness has been debated. PURPOSE: To identify differences in ACL agonist and antagonist muscle forces, during braced and unbraced conditions, while walking with the application of unexpected perturbations. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 20 recreational athletes were perturbed during walking at a speed of 1.1 m/s, and motion analysis data were used to create patient-specific musculoskeletal models. Static optimization was performed to calculate the lower-limb muscle forces. Statistical parametric mapping was used to compare muscle forces between the braced and unbraced conditions during the stance phase of the perturbed cycle. RESULTS: The brace reduced muscle forces in the quadriceps (QUADS), gastrocnemius (GAS), and soleus (SOL) but not in the hamstrings. The peak QUADS muscle force was significantly lower with the brace versus without at 49% to 60% of the stance phase (28.9 ± 12.98 vs 14.8 ± 5.06 N/kg, respectively; P < .001) and again at 99% of the stance phase (1.7 ± 0.4 vs 3.6 ± 0.13 N/kg, respectively; P = .049). The SOL muscle force peak was significantly lower with the brace versus without at 25% of the stance phase (1.9 ± 1.7 vs 4.6 ± 3.4 N/kg, respectively; P = .031) and at 39% of the stance phase (1.9 ± 1.4 vs 5.3 ± 5.6 N/kg, respectively; P = .007). In the GAS, there were no significant differences between conditions throughout the whole stance phase except between 97% and 100%, where the braced condition portrayed a smaller peak force (0.23 ± 0.13 vs 1.4 ± 1.1 N/kg for unbraced condition; P = .024). CONCLUSION: These findings suggested that PKBs that restrict knee hyperextension and knee valgus/varus motion can alter neuromuscular patterns, which result in a reduction of QUADS force. CLINICAL RELEVANCE: Understanding the way PKBs alter muscle function and knee mechanics can provide invaluable information that will help in making decisions about their use. Further studies should investigate different types of braces and perturbations to evaluate the effectiveness of PKBs.

14.
J Biomech ; 110: 109971, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32827793

RESUMEN

Anterior cruciate ligament (ACL) injuries most commonly occur following a perturbation. Perturbations make the athlete unbalanced or at loss of control, which ultimately can lead to injury. The purpose of this study was to identify differences in ACL agonist and antagonist muscle forces, between sexes, during unexpected perturbations. Twenty recreational athletes were perturbed during walking at a speed of 1.1 m/s. Motion analysis data were used to create subject-specific musculoskeletal models and static optimization was performed to calculate muscle forces in OpenSim. Statistical parametric mapping (SPM) was used to compare muscle forces between males and females during the stance phase of the perturbed cycle. Females illustrated higher ACL antagonist muscle forces (p < 0.05) and lower ACL agonist muscle forces, compared to their male counterparts. The quadriceps (QUADs) muscle group peak was about 1.4 times higher in females (35.50 ± 8.71 N/kg) than males (22.81 ± 5.83 N/kg during 57%-62% of the stance phase (p < 0.05). Females presented a larger peak of gastrocnemius (GAS) at two instances: 12.42 ± 4.5 N/kg vs. 8.10 ± 2.83 N/kg between 70% and 75% at p < 0.05 and 2.26 ± 0.55 N/kg vs. 0.52 ± 0.09 N/kg between 95% and 100% at p < 0.05. Conversely, males illustrated higher initial hamstrings (HAMS) peak of 10.67 ± 4.15 N/kg vs. 5.38 ± 1.1 N/kg between 8% and 11%. Finally, males showed almost double the soleus (SOL) peak at 30.63 ± 8.64 N/kg vs. 17.52 ± 3.62 N/kg between 83% and 92% of the stance phase at p < 0.001. These findings suggest that females may exhibit riskier neuromuscular control in unanticipated situations, like sports.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Deportes , Ligamento Cruzado Anterior , Fenómenos Biomecánicos , Femenino , Humanos , Articulación de la Rodilla , Masculino , Músculo Esquelético , Caminata
15.
Comput Methods Biomech Biomed Engin ; 23(14): 1071-1081, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32691622

RESUMEN

Direct skeletal attachment of prostheses in transfemoral amputees circumvents skin-interface complications associated with conventional sockets; however, joint pain and musculoskeletal disease is known to occur postoperatively. This study quantified hip contact forces and the roles of individual muscles in producing hip contact forces during walking in transfemoral amputees with osseointegrated prostheses. Musculoskeletal models were developed for four transfemoral amputees. Gluteus maximus and gluteus medius were the major contributors to the hip contact forces, and the intact limb hip muscles demonstrated greater contributions to hip contact forces than those of the residual limb. The findings may be useful for mitigating walking asymmetry.


Asunto(s)
Amputados , Miembros Artificiales , Fémur/cirugía , Articulación de la Cadera/fisiopatología , Músculo Esquelético/fisiopatología , Oseointegración , Caminata/fisiología , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Spine J ; 20(10): 1692-1704, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32442519

RESUMEN

BACKGROUND CONTEXT: While burst fracture is a well-known cause of spinal canal occlusion with dynamic, axial spinal compression, it is unclear how such loading mechanisms might cause occlusion without fracture. PURPOSE: To determine how spinal canal occlusion during dynamic compression of the lumbar spine is differentially caused by fracture or mechanisms without fracture and to examine the influence of spinal level on occlusion. STUDY DESIGN: A cadaveric biomechanical study. METHODS: Twenty sets of three-vertebrae specimens from all spinal levels between T12 and S1 were subjected to dynamic compression using a hydraulic loading apparatus up to a peak velocity between 0.1 and 0.9 m/s. The presence of canal occlusion was measured optically with a high-speed camera. This was repeated with incremental increases of 4% compressive strain until a vertebral fracture was detected using acoustic emission measurements and computed tomographic imaging. RESULTS: For axial compression without fracture, the peak occlusion (Omax) was 29.9±10.0%, which was deduced to be the result of posterior bulging of the intervertebral disc into the spinal canal. Omax correlated significantly with lumbar spinal level (p<.001), the compressive displacement (p<.001) and the cross-sectional area of the vertebra (p=.031). CONCLUSIONS: Spinal canal occlusion observed without vertebral fracture involves intervertebral disc bulging. The lower lumbar spine tended to be more severely occluded than more proximal levels. CLINICAL SIGNIFICANCE: Clinically, intermittent canal occlusion from disc bulging during dynamic compression may not show any radiographic features. The lower lumbar spine should be a focus of injury prevention intervention in cases of high-rate axial compression.


Asunto(s)
Canal Medular , Fenómenos Biomecánicos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Región Lumbosacra , Canal Medular/diagnóstico por imagen , Fracturas de la Columna Vertebral/diagnóstico por imagen
17.
J Mech Behav Biomed Mater ; 108: 103780, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32310106

RESUMEN

Underbody blast (UBB) attacks on military vehicles can result in severe pelvic injuries to the vehicle occupants. The aim of this study was to evaluate the biomechanical responses of the pelvis to UBB-like vertical loading in different seated postures. High-rate axial loading were performed on six defleshed human cadaveric pelves, whilst a three-dimensional finite element model of a human pelvis was created and used to simulate the high-rate loading with the model responses validated against experimental measurements. Three pelvic orientation corresponding to normal, upright, and relaxed seated postures, along with three different sacral slope angles representing the range of relative pelvis and sacrum positions known to exist across the population, were studied. The results showed that a decrease in posterior pelvic tilt slightly reduced the severity of sacral fracture, while an increase in sacral angle extended the region of anterior sacral fracture but reduced the extent to which the dorsal sacrum fractured. Across all seated postures, the predicted fractures of the ischial tuberosity, ischium, pubic rami and sacrum coincided with the typical pelvic fracture patterns observed in UBB events. The present study suggests that adopting an upright initial seated posture prior to an UBB event may reduce the risk of pelvic injuries.


Asunto(s)
Huesos Pélvicos , Sedestación , Explosiones , Humanos , Pelvis , Postura
18.
Med Eng Phys ; 77: 95-106, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919013

RESUMEN

Individuals with unilateral transfemoral amputation depend on compensatory muscle and joint function to generate motion of the lower limbs, which can produce gait asymmetry; however, the functional role of the intact and residual limb muscles of transfemoral amputees in generating progression, support, and mediolateral balance of the body during walking is not well understood. The aim of this study was to quantify the contributions of the intact and the residual limb's contralateral muscles to body center of mass (COM) acceleration during walking in transfemoral amputees. Three-dimensional subject-specific musculoskeletal models of 6 transfemoral amputees fitted with a socket-type prosthesis were developed and used to quantify muscle forces and muscle contributions to the fore-aft, vertical, and mediolateral body COM acceleration using a pseudo-inverse ground reaction force decomposition method during over-ground walking. Anterior pelvic tilt and hip range of motion in the sagittal and frontal planes of the intact limb was significantly larger than those in the residual limb (p<0.05). The mean contributions of the intact limb hip muscles to body COM support, forward propulsion and mediolateral balance were significantly greater than those in the residual limb (p<0.05). Gluteus maximus contributed more to propulsion and support, while gluteus medius contributed more to balance than other muscles in the intact limb than the residual limb. The findings demonstrate the role of the intact limb hip musculature in compensating for reduced or absent muscles and joint function in the residual limb of transfemoral amputees during walking. The results may be useful in developing rehabilitation programs and design of prostheses to improve gait symmetry and mitigate post-operative musculoskeletal pathology.


Asunto(s)
Amputados , Fémur/cirugía , Marcha , Fenómenos Biomecánicos , Fémur/fisiología , Humanos , Articulaciones/fisiología , Cinética , Masculino , Persona de Mediana Edad , Modelos Biológicos
19.
J Biomech ; 100: 109594, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31924348

RESUMEN

Subchondral bone (SCB) microdamage is prevalent in the joints of human athletes and animals subjected to high rate and magnitude cyclic loading of the articular surface. Quantifying the effect of such focal in vivo fatigue-induced microdamage on the mechanical response of the tissue is critical for the understanding of joint surface injury and the development of osteoarthritis. Thus, we aimed to quantify the mechanical properties of cartilage-bone from equine third metacarpal (MC3) condyles, which is a common area of accumulated microdamage due to repetitive impact loading. We chose a non-destructive technique, i.e. high-resolution microcomputed tomography (µCT) imaging, to identify various degrees of in vivo microdamage in SCB prior to mechanical testing; because µCT imaging can only identify a proportion of accumulated microdamage, we aimed to identify racing and training history variables that provide additional information on the prior loading history of the samples. We then performed unconfined high-rate compression of approximately 2% strain at 45%/s strain rate to simulate a cycle of gallop and used real-time strain measurements using digital image correlation (DIC) techniques to find the stiffness and shock absorbing ability (relative energy loss) of the cartilage-bone unit, and those associated with cartilage and SCB. Results indicated that stiffness of cartilage-bone and those associated with the SCB decreased with increasing grade of damage. Whole specimen stiffness also increased, and relative energy loss decreased with higher TMD, whereas bone volume fraction of the SCB was only associated negatively with the stiffness of the bone. Overall, the degree of subchondral bone damage observed with µCT was the main predictor of stiffness and relative energy loss of the articular surface of the third metacarpal bone of Thoroughbred racehorses under impact loading.


Asunto(s)
Cartílago Articular/fisiopatología , Fuerza Compresiva , Fatiga/patología , Fatiga/fisiopatología , Huesos del Metacarpo/fisiopatología , Animales , Fenómenos Biomecánicos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Fatiga/diagnóstico por imagen , Caballos , Humanos , Huesos del Metacarpo/diagnóstico por imagen , Huesos del Metacarpo/patología , Presión , Microtomografía por Rayos X
20.
Front Pharmacol ; 10: 1278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749702

RESUMEN

Rationale: Epilepsy patients often exhibit reduced bone mineral density and are at an increased risk of bone fracture. Whether these bone abnormalities are due to the use of anti-epileptic drugs (AED's) or the disease itself is unknown. For example, although decreased bone health in epilepsy patients is generally attributed to the use of AED's, seizures can also trigger a number of physiological processes that have the potential to affect bone. Therefore, to assess whether bone abnormalities occur in epilepsy in the absence of AED's, the current study investigated mechanical characteristics and trabecular bone morphology in rats with chronic temporal lobe epilepsy. Methods: Ten-week old male Wistar rats underwent kainic acid-induced status epilepticus (SE; n = 7) or a sham procedure (n = 9). Rats were implanted with EEG recording electrodes at nine weeks post-SE, and video-EEG was continuously recorded for one week at 10- and 22-weeks post-SE to confirm that SE rats had spontaneous seizures. Open-field testing to assess locomotion was conducted at 23-weeks post-SE. At 24-weeks post-SE, rats were euthanized and tibia were extracted to determine trabecular morphology by micro-computed tomography (µCT), while femurs were used to investigate mechanical properties via 3-point bending. Results: All post-SE rats had spontaneous seizures at 10- and 22-weeks post-SE, while none of the sham rats had seizures. µCT trabecular analysis of tibia revealed no differences in total volume, bone volume, bone volume fraction, trabecular number, or trabecular separation between post-SE or sham rats, although post-SE rats did have increased trabecular thickness. There were also no group differences in total distance travelled in the open field suggesting that activity levels did not account for the increased trabecular thickness. In addition, no differences in mechanical properties of femurs were observed between the two groups. Conclusion: There was a lack of overt bone abnormalities in rats with chronic temporal lobe epilepsy in the absence of AED treatment. Although further studies are still needed, these findings may have important implications towards understanding the source (e.g., AED treatments) of bone abnormalities in epilepsy patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...