Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(2)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672209

RESUMEN

Papillary thyroid cancer (PTC) is the most prevalent histological type of thyroid cancer (TC) worldwide. Although tumor metastasis occurs in regional lymph nodes, distant metastasis (DM) may also occur. Radioactive iodine (RAI) therapy is an effective treatment for TC; however, resistance to RAI occurs in patients with DM. Therefore, in this study, we investigated the efficacy of DM-related biomarkers as therapeutic targets for PTC therapy. ABCA1 expression was higher in aggressive BCPAP cells than in other PTC cells in terms of migration and invasion capacity. The knockdown of ABCA1 substantially decreased the expression of the epithelial-mesenchymal transition (EMT) marker, N-cadherin, and EMT regulator (ZEB1), resulting in suppressed migration and invasion of BCPAP cells. ABCA1 knockdown also reduced ERK activity and Fra-1 expression, which correlated with the effects of an ERK inhibitor or siRNA-mediated inhibition of ERK or Fra-1 expression. Furthermore, ABCA1-knocked-down BCPAP cells suppressed cell migration and invasion by reducing Fra-1 recruitment to Zeb1 promoter; lung metastasis was not observed in mice injected with ABCA1-knocked-down cells. Overall, our findings suggest that ABCA1 regulates lung metastasis in TC cells.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Tiroides , Animales , Ratones , Transportador 1 de Casete de Unión a ATP , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Radioisótopos de Yodo , Invasividad Neoplásica , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/metabolismo
2.
Front Plant Sci ; 13: 984825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275512

RESUMEN

Rapid changes in agricultural environments caused by global warming pose a major challenge to food production and safety. Common wheat (Triticum aestivum) is a hexaploid plant (AABBDD) that shares large numbers of quantitative traits and resistance genes with B and D genomes of Aegilops species, which are responsible for several metabolic functions and biosynthetic processes, particularly in plant adaptation to biotic as well as abiotic stresses. Comparatively, the abundance of the Aegilops gene pool is much higher than that of Triticum. Therefore, we used four universal DNA barcodes for plants (ITS2, matK, rbcL, and psbM-petN) to construct a phylogenetic tree to classify the genus Aegilops. Fourteen species were distinguished among a total of 17 representative species. Aegilops biuncialis, Aegilops juvenalis, and Aegilops umbellulata could not be grouped into any of the clusters in the phylogenetic tree, indicating that these three species could not be distinguished by four DNA barcodes. Therefore, from 2408 SNPs obtained using genotyping by sequencing (GBS), we manually screened 30 SNPs that could be potentially used to classify these three species. The results of gene flow and genetic differentiation index (Fst) showed that the genetic differentiation among the three species was small, and there was bidirectional horizontal gene transfer between the three species, which was consistent with our results that the three species were difficult to classify by DNA barcode.

3.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673196

RESUMEN

Intestinal injury is observed in cancer patients after radiotherapy and in individuals exposed to radiation after a nuclear accident. Radiation disrupts normal vascular homeostasis in the gastrointestinal system by inducing endothelial damage and senescence. Despite advances in medical technology, the toxicity of radiation to healthy tissue remains an issue. To address this issue, we investigated the effect of atorvastatin, a commonly prescribed hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor of cholesterol synthesis, on radiation-induced enteropathy and inflammatory responses. We selected atorvastatin based on its pleiotropic anti-fibrotic and anti-inflammatory effects. We found that atorvastatin mitigated radiation-induced endothelial damage by regulating plasminogen activator inhibitor-1 (PAI-1) using human umbilical vein endothelial cells (HUVECs) and mouse model. PAI-1 secreted by HUVECs contributed to endothelial dysfunction and trans-endothelial monocyte migration after radiation exposure. We observed that PAI-1 production and secretion was inhibited by atorvastatin in irradiated HUVECs and radiation-induced enteropathy mouse model. More specifically, atorvastatin inhibited PAI-1 production following radiation through the JNK/c-Jun signaling pathway. Together, our findings suggest that atorvastatin alleviates radiation-induced enteropathy and supports the investigation of atorvastatin as a radio-mitigator in patients receiving radiotherapy.


Asunto(s)
Atorvastatina/farmacología , Rayos gamma/efectos adversos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Enfermedades Intestinales/metabolismo , Monocitos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Migración Transendotelial y Transepitelial , Animales , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Enfermedades Intestinales/patología , Ratones , Monocitos/patología , Traumatismos Experimentales por Radiación/patología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Migración Transendotelial y Transepitelial/efectos de la radiación
4.
Rice (N Y) ; 11(1): 5, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330772

RESUMEN

BACKGROUND: Plants are frequently subjected to abiotic and biotic stresses, and WRKY proteins play a pivotal role in the response to such stress. OsWRKY11 is induced by pathogens, drought, and heat, suggesting a function in biotic and abiotic stress responses. RESULTS: This study identified OsWRKY11, a member of WRKY group IIc. It is a transcriptional activator that localized to the nucleus. Ectopic expression of OsWRKY11 resulted in enhanced resistance to a bacterial pathogen, Xanthomonas oryzae pv. oryzae; resistance was compromised in transgenic lines under-expressing OsWRKY11. Ectopic expression of OsWRKY11 resulted in constitutive expression of defense-associated genes, whereas knock-down (kd) of OsWRKY11 reduced expression of defense-associated genes during pathogen attack, suggesting that OsWRKY11 activates defense responses. OsWRKY11 bound directly to the promoter of CHITINASE 2, a gene associated with defense, and activated its transcription. In addition, ectopic expression of OsWRKY11 enhanced tolerance to drought stress and induced constitutive expression of drought-responsive genes. Induction of drought-responsive genes was compromised in OsWRKY11-kd plants. OsWRKY11 also bound directly to the promoter of a drought-responsive gene, RAB21, activating its transcription. In addition, OsWRKY11 protein levels were controlled by the ubiquitin-proteasome system. CONCLUSION: OsWRKY11 integrates plant responses to pathogens and abiotic stresses by positively modulating the expression of biotic and abiotic stress-related genes.

5.
Mol Genet Genomics ; 293(3): 579-586, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29230584

RESUMEN

Bakanae disease (BD) has emerged as a serious threat in almost all rice cultivation regions worldwide. Nampyeong is a Korean japonica rice variety known to be resistant to BD. In this study, quantitative trait locus (QTL) mapping was performed with F2 and F3 plants derived from a cross between the Nampyeong variety and a susceptible Korean japonica line, DongjinAD. First, resequencing of Nampyeong and DongjinAD was performed, which identified 171,035 single nucleotide polymorphisms (SNPs) between the two parental varieties. Using these SNPs, 161 cleaved amplified polymorphic sequence (CAPS) markers and six derived CAPS markers were developed; then, a genetic map was constructed from the genotypes of 180 plants from the DongjinAD/Nampyeong F2 plants. The total length of the constructed genetic map was 1386 cM, with an average interval of 8.9 cM between markers. The BD mortality rates of each F3 family were measured by testing 40 F3 progenies using in vitro seedling screening method. QTL analysis based on the genetic map and mortality rate data revealed a major QTL, qFfR1, on rice chromosome 1. qFfR1 was located at 89.8 cM with a logarithm of the odds (LOD) score of 22.7. Further, there were three markers at this point: JNS01033, JNS01037, and JNS01041. A total of 15 genes were identified with annotations related to defense against plant diseases among the 179 genes in the qFfR1 interval at 95% probability, thereby providing potential candidate genes for qFfR1. qFfR1 and its closely linked markers will be useful in breeding rice varieties resistant to BD.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad , Oryza/genética , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas , Ligamiento Genético , Oryza/inmunología , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
6.
J Exerc Rehabil ; 12(5): 471-475, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27807527

RESUMEN

The purpose of this study was to observe the change of lumbosacral angle and intervertebral disc (IVD) area. The study was conducted on chronic low back pain (CLBP) female patients for 12 weeks by operating sling exercise and general physical therapy. The 57 CLBP were divided into 2 groups which, sling exercise group (SEG, n=34) and general physical therapy group (PTG, n=23). The experiment was conducted three times a week for 12 weeks. The lumbosacral angle, which means the angle between the L1-L2 lumbar was measured by plain radiography. The IVD area, which means the IVD height and volume was measured by magnetic resonance imaging. The pain was measured by visual analogue scale (VAS). As a result, after 12-week exercise, VAS had decreased in all groups. The angle of L3-4 and L4-5 and the height of IVD had increased in SEG. Also, IVD height and volume has more improved in SEG compare the PTG. Therefore, the sling exercise is proper treatment for CLBP patients' recovery because It improve the lumbosacral angle and IVD area.

7.
Toxicology ; 361-362: 39-48, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27394961

RESUMEN

Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.


Asunto(s)
Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/metabolismo , Hepatocitos/efectos de los fármacos , Lípidos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Colesterol en la Dieta/toxicidad , Glutatión/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido , Pruebas de Función Hepática , Ratones , Ratones Noqueados , Transducción de Señal
8.
Genes Dev ; 27(15): 1706-17, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23913923

RESUMEN

The relative contribution of hepatocyte growth factor (HGF)/MET and epidermal growth factor (EGF)/EGF receptor (EGFR), two key signal transduction systems in the normal and diseased liver, to fate decisions of adult hepatic progenitor cells (HPCs) has not been resolved. Here, we developed a robust culture system that permitted expansion and genetic manipulation of cells capable of multilineage differentiation in vitro and in vivo to examine the individual roles of HGF/MET and EGF/EGFR in HPC self-renewal and binary cell fate decision. By employing loss-of-function and rescue experiments in vitro, we showed that both receptors collaborate to increase the self-renewal of HPCs through activation of the extracellular signal-regulated kinase (ERK) pathway. MET was a strong inducer of hepatocyte differentiation by activating AKT and signal transducer and activator of transcription (STAT3). Conversely, EGFR selectively induced NOTCH1 to promote cholangiocyte specification and branching morphogenesis while concomitantly suppressing hepatocyte commitment. Furthermore, unlike the deleterious effects of MET deletion, the liver-specific conditional loss of Egfr facilitated rather than suppressed progenitor-mediated liver regeneration by switching progenitor cell differentiation toward hepatocyte lineage. These data provide new insight into the mechanisms regulating the stemness properties of adult HPCs and reveal a previously unrecognized link between EGFR and NOTCH1 in directing cholangiocyte differentiation.


Asunto(s)
Diferenciación Celular , Receptores ErbB/metabolismo , Hepatocitos/citología , Hepatocitos/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Animales , Línea Celular , Células Cultivadas , Receptores ErbB/genética , Hepatocitos/enzimología , Ratones , Ratones SCID , Proteína Oncogénica v-akt/metabolismo , Receptores Notch/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Madre/enzimología
9.
Pacing Clin Electrophysiol ; 35(3): e59-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20883511

RESUMEN

We describe a patient with gastroparesis after radiofrequency catheter ablation (RFCA) as a result of vagus nerve injury. A 42-year-old man underwent redo-RFCA due to recurrent drug-resistant symptomatic atrial fibrillation. The patient complained of indigestion and early satiety 2 weeks after the second procedure. There was also weight loss of approximately 5 kg for 2 months. He underwent endoscopy during which food material was noticed. In the upper gastrointestinal series, most contrast material still remained in the stomach on the 2-hour delayed images, suggesting delayed gastric emptying time.


Asunto(s)
Fibrilación Atrial/cirugía , Ablación por Catéter/efectos adversos , Dispepsia/etiología , Gastroparesia/etiología , Traumatismos del Nervio Vago/complicaciones , Pérdida de Peso , Adulto , Medios de Contraste , Dispepsia/diagnóstico por imagen , Gastroparesia/diagnóstico por imagen , Humanos , Masculino , Radiografía , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
10.
Mol Biol Evol ; 28(1): 835-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20935065

RESUMEN

Functional gene transfer from the plastid to the nucleus is rare among land plants despite evidence that DNA transfer to the nucleus is relatively frequent. During the course of sequencing plastid genomes from representative species from three rosid genera (Castanea, Prunus, Theobroma) and ongoing projects focusing on the Fagaceae and Passifloraceae, we identified putative losses of rpl22 in these two angiosperm families. We further characterized rpl22 from three species of Passiflora and one species of Quercus and identified sequences that likely represent pseudogenes. In Castanea and Quercus, both members of the Fagaceae, we identified a nuclear copy of rpl22, which consisted of two exons separated by an intron. Exon 1 encodes a transit peptide that likely targets the protein product back to the plastid and exon 2 encodes rpl22. We performed phylogenetic analyses of 97 taxa, including 93 angiosperms and four gymnosperm outgroups using alignments of 81 plastid genes to examine the phylogenetic distribution of rpl22 loss and transfer to the nucleus. Our results indicate that within rosids there have been independent transfers of rpl22 to the nucleus in Fabaceae and Fagaceae and a putative third transfer in Passiflora. The high level of sequence divergence between the transit peptides in Fabaceae and Fagaceae strongly suggest that these represent independent transfers. Furthermore, Blast searches did not identify the "donor" genes of the transit peptides, suggesting a de novo origin. We also performed phylogenetic analyses of rpl22 for 87 angiosperms and four gymnosperms, including nuclear-encoded copies for five species of Fabaceae and Fagaceae. The resulting trees indicated that the transfer of rpl22 to the nucleus does not predate the origin of angiosperms as suggested in an earlier study. Using previously published angiosperm divergence time estimates, we suggest that these transfers occurred approximately 56-58, 34-37, and 26-27 Ma for the Fabaceae, Fagaceae, and Passifloraceae, respectively.


Asunto(s)
Núcleo Celular/genética , Genoma de Plastidios , Magnoliopsida/genética , Plastidios/genética , Prunus/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Evolución Molecular , Transferencia de Gen Horizontal , Genoma de Planta , Magnoliopsida/clasificación , Magnoliopsida/citología , Datos de Secuencia Molecular , Filogenia , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia
11.
Plant Biotechnol J ; 9(1): 100-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20553419

RESUMEN

Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%-38% and 17%∼26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa-like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/farmacología , Defensinas/biosíntesis , Defensinas/farmacología , Vectores Genéticos , Nicotiana/genética , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Cloroplastos/genética , Defensinas/genética , Defensinas/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Pectobacterium carotovorum/efectos de los fármacos , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/microbiología , Nicotiana/virología , Virus del Mosaico del Tabaco/efectos de los fármacos , Transgenes
12.
J Periodontal Implant Sci ; 40(3): 125-31, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20607057

RESUMEN

PURPOSE: Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. METHODS: In five male beagle dogs, 4 x 4 mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. RESULTS: There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. CONCLUSIONS: In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus.

13.
Int J Prosthodont ; 21(4): 285-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18717083

RESUMEN

PURPOSE: To identify and measure distortions inherent in the casting process of a Class III mandibular cobalt-chromium (Co-Cr) framework to illustrate the problems faced by the laboratory technician and the clinician and to measure the changes that occur during the correction of the fit discrepancy using laser welding. MATERIALS AND METHODS: Five identical castings of a Co-Cr alloy partial denture casting were made and measured between 3 widely separated points using the x, y, and z adjustments of a Nikon Measurescope. The same measurements were made after each of the following clinical and laboratory procedures: sprue removal, sectioning of the casting into 3 parts through the posterior meshwork, fitting the segments to the master cast, picking up the segments using resin, and laser welding of the 3 segments. RESULTS: Measurements of all 5 castings showed a cross-arch decrease after sprue removal, an increase after fitting the segments to the master cast, and a slight decrease after resin pickup and laser welding. CONCLUSIONS: Within the limitations of this study, the findings suggest that precise tooth-frame relations can be established by resin pickup and laser welding of segments of Co-Cr removable partial denture frameworks.


Asunto(s)
Técnica de Colado Dental , Diseño de Dentadura , Dentadura Parcial Removible , Soldadura/instrumentación , Aleaciones de Cromo , Cobalto , Técnica de Colado Dental/instrumentación , Soldadura Dental , Humanos , Rayos Láser , Mandíbula , Ajuste de Prótesis/métodos
14.
Mol Phylogenet Evol ; 48(3): 1204-17, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18638561

RESUMEN

Chickpea (Cicerarietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5'exon, similar to other legumes. Two genes have lost their introns, one in the 3'exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate "IR-lacking clade" (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering.


Asunto(s)
Fabaceae/genética , Intrones , Proteínas de Plantas/genética , Plastidios/genética , Secuencia de Aminoácidos , Evolución Molecular , Exones , Ingeniería Genética/métodos , Variación Genética , Genoma , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
15.
Theor Appl Genet ; 116(5): 723-37, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18214421

RESUMEN

The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3' end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss.


Asunto(s)
ADN de Cloroplastos/genética , Evolución Molecular , Intrones/genética , Malpighiaceae/genética , Manihot/genética , Proteínas de Plantas/genética , Edición de ARN/genética , Secuencia de Bases , Mapeo Cromosómico , Etidio , Genes de Plantas , Genoma de Planta/genética , Datos de Secuencia Molecular , Filogenia
16.
Proc Natl Acad Sci U S A ; 104(49): 19369-74, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18048330

RESUMEN

Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements.


Asunto(s)
Evolución Molecular , Genes de Plantas , Genoma de Plastidios/genética , Magnoliopsida/clasificación , Variación Genética , Magnoliopsida/genética , Filogenia
17.
Theor Appl Genet ; 115(4): 571-90, 2007 08.
Artículo en Inglés | MEDLINE | ID: mdl-17534593

RESUMEN

Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.


Asunto(s)
Agrostis/genética , Hordeum/genética , Poaceae/genética , Sorghum/genética , Mapeo Cromosómico , ADN de Cloroplastos/genética , ADN Complementario/genética , ADN Intergénico/genética , Evolución Molecular , Variación Genética , Genoma de Planta , Filogenia , Plantas Modificadas Genéticamente , Especificidad de la Especie
18.
J Biomed Mater Res B Appl Biomater ; 83(2): 391-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17443666

RESUMEN

The objective of this investigation was to analyze whether various combinations of the ROS scavengers glutathione (GSH), N-acetyl-cysteine (NAC), and vitamins C and E decrease DNA damage due to visible-light-irradiated (VL-irradiated) camphorquinone/N,N-dimethyl-p-toluidine (CQ/DMT) compared with individual vitamin C or E. PhiX-174 RF plasmid DNA was used to determine single and double strand breaks as parameters of DNA damage. Individual ROS scavengers and combinations of the antioxidants were added to plasmid DNA treated with VL-irradiated CQ/DMT/Cu (II). After incubation, DNA was loaded into a 1% agarose gel. Following electrophoresis, gels stained with 0.5 microg/mL ethidium bromide were photographed under ultraviolet illumination and analyzed with NIH ImageJ software. Results were evaluated between groups for statistical significance using Student's paired t-test (p < 0.05). Glutathione significantly reduced oxidative DNA damage at all test concentrations when combined with vitamin C or vitamin E. The concentration of damaged DNA observed in the presence of combinations of GSH with vitamin C or vitamin E was significantly lower compared with all other combinations of antioxidants investigated in our study (p < 0.05). In contrast to GSH, NAC was not able to compensate the pro-oxidative effects of vitamin C and vitamin E. Only at a concentration of 2 mM, NAC combined with vitamin C efficiently prevented CQ/DMT/Cu (II)-associated DNA damage. Our data indicate that solely the combinations of GSH with vitamin C or vitamin E significantly reduce the severity of oxidative DNA damage caused by CQ/DMT, whereas NAC may even increase the pro-oxidant activity of vitamin C and vitamin E.


Asunto(s)
Daño del ADN/efectos de los fármacos , ADN/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Glutatión/farmacología , Acetilcisteína/química , Acetilcisteína/farmacología , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Depuradores de Radicales Libres/química , Glutatión/química , Luz , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/química , Terpenos/química , Terpenos/efectos de la radiación , Toluidinas/química , Toluidinas/efectos de la radiación , Vitamina E/química , Vitamina E/farmacología
19.
Cell Signal ; 19(7): 1393-403, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17307335

RESUMEN

Redd1, a recently discovered stress-response gene, is regulated by hypoxia via hypoxia-inducible factor 1 (HIF-1) and by DNA damage via p53/p63; however, the signaling pathway by which its expression is induced by hypoxia has not been elucidated. In the present study, we demonstrated that the expression of Redd1 in response to hypoxia (1% O(2)), hypoxia-mimetic agent, cobalt chloride (CoCl(2)) and high cell density (HCD) requires coactivation of HIF-1alpha and Sp1. CoCl(2) and HCD induced the activation of HIF-1alpha and Sp1 in HeLa cells, and siRNAs targeting HIF-1alpha and Sp1 abrogated Redd1 expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 and by a dominant-negative PI3K mutant reduced the expression of Redd1 and activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Also, suppression of Akt activation blocked the expression of Redd1 and the activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Furthermore, we found that the induction of Redd1 expression by CoCl(2) can be mediated by activation of Sp1 in HIF-1alpha-deficient cells but that a higher level of Redd1 expression is achieved when these cells are transfected with HIF-1alpha. These results demonstrate that hypoxic condition-and HCD-induced expression of Redd1 is mediated by coactivation of Sp1 and HIF-1alpha downstream of the PI3K/Akt signaling pathway.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Recuento de Células , Hipoxia de la Célula , Secuencia de Consenso , Activación Enzimática , Regulación de la Expresión Génica , Células HeLa , Humanos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
20.
Plant Biotechnol J ; 5(2): 339-53, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17309688

RESUMEN

The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25,943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (> 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)-trnT (GGU) spacer, ycf4-cemA spacer, trnI (GAU) intron and rrn5-trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop.


Asunto(s)
Cloroplastos/genética , Coffea/genética , Genoma de Planta , Filogenia , Secuencia de Bases , Mapeo Cromosómico , Coffea/clasificación , ADN de Cloroplastos , ADN Intergénico , Genes de Plantas , Magnoliopsida/clasificación , ARN de Planta , ARN de Transferencia/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...