Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Nat Commun ; 14(1): 4318, 2023 07 18.
Article En | MEDLINE | ID: mdl-37463892

Fundamental to all living organisms and living soft matter are emergent processes in which the reorganization of individual constituents at the nanoscale drives group-level movements and shape changes at the macroscale over time. However, light-induced degradation of fluorophores, photobleaching, is a significant problem in extended bioimaging in life science. Here, we report opening a long-time investigation window by nonbleaching phase intensity nanoscope: PINE. We accomplish phase-intensity separation such that nanoprobe distributions are distinguished by an integrated phase-intensity multilayer thin film (polyvinyl alcohol/liquid crystal). We overcame a physical limit to resolve sub-10 nm cellular architectures, and achieve the first dynamic imaging of nanoscopic reorganization over 250 h using PINE. We discover nanoscopic rearrangements synchronized with the emergence of group-level movements and shape changes at the macroscale according to a set of interaction rules with importance in cellular and soft matter reorganization, self-organization, and pattern formation.


Nanotechnology , Optical Imaging , Photobleaching , Fluorescent Dyes
2.
Sensors (Basel) ; 23(5)2023 Mar 04.
Article En | MEDLINE | ID: mdl-36905027

Precise nanostructure geometry that enables the optical biomolecular delivery of nanosensors to the living intracellular environment is highly desirable for precision biological and clinical therapies. However, the optical delivery through membrane barriers utilizing nanosensors remains difficult due to a lack of design guidelines to avoid inherent conflict between optical force and photothermal heat generation in metallic nanosensors during the process. Here, we present a numerical study reporting significantly enhanced optical penetration of nanosensors by engineering nanostructure geometry with minimized photothermal heating generation for penetrating across membrane barriers. We show that by varying the nanosensor geometry, penetration depths can be maximized while heat generated during the penetration process can be minimized. We demonstrate the effect of lateral stress induced by an angularly rotating nanosensor on a membrane barrier by theoretical analysis. Furthermore, we show that by varying the nanosensor geometry, maximized local stress fields at the nanoparticle-membrane interface enhanced the optical penetration process by four-fold. Owing to the high efficiency and stability, we anticipate that precise optical penetration of nanosensors to specific intracellular locations will be beneficial for biological and therapeutic applications.


Nanoparticles , Nanostructures , Nanotechnology
3.
ACS Nano ; 16(2): 2013-2023, 2022 02 22.
Article En | MEDLINE | ID: mdl-35041396

Multifunctional nanoprobes have attracted significant attention in a wide range of disciplines such as nanomedicine, precision medicine, and cancer diagnosis and treatment. However, integrating multifunctional ability in a nanoscale structure to precisely target, image, and deliver with cellular spatial/temporal resolution is still challenging in cellulo applications. This is because the development of such high-precision resolution needs to be carried out without labeling, photobleaching, and structurally segregating live cells. In this study, we present an integrated nanostructure of a mesoporous-silica nanosphere with an optical nanocrescent antenna (MONA) for multifunctional cellular targeting, drug delivery, and molecular imaging with spatiotemporal resolution. MONA comprises a systematically constructed Au nanocrescent (AuNC) antenna as a nanosensor and optical switch on a mesoporous-silica nanosphere as a cargo to molecular delivery. MONA made of antiepithelial cell adhesion molecules (anti-EpCAM)-conjugated AuNC facilitates the specific targeting of breast cancer cells, resulting in a highly focused photothermal gradient that functions as a molecular emitter. This light-driven molecular, doxorubicin (DOX) delivery function allows rapid apoptosis of breast cancer cells. Since MONA permits the tracking of quantum biological electron-transfer processes, in addition to its role as an on-demand optical switch, it enables the monitoring of the dynamic behavior of cellular cytochrome c pivoting cell apoptosis in response to the DOX delivery. Owing to the integrated functions of molecular actuation and direct sensing at the precisely targeted spot afforded by MONA, we anticipate that this multifunctional optical nanoantenna structure will have an impact in the fields of nanomedicine, cancer theranostics, and basic life sciences.


Nanoparticles , Neoplasms , Doxorubicin/chemistry , Drug Delivery Systems/methods , Humans , Nanomedicine , Nanoparticles/chemistry , Neoplasms/drug therapy , Porosity , Silicon Dioxide/chemistry
4.
Sensors (Basel) ; 23(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36616919

Dynamic detection in challenging lighting environments is essential for advancing intelligent robots and autonomous vehicles. Traditional vision systems are prone to severe lighting conditions in which rapid increases or decreases in contrast or saturation obscures objects, resulting in a loss of visibility. By incorporating intelligent optimization of polarization into vision systems using the iNC (integrated nanoscopic correction), we introduce an intelligent real-time fusion algorithm to address challenging and changing lighting conditions. Through real-time iterative feedback, we rapidly select polarizations, which is difficult to achieve with traditional methods. Fusion images were also dynamically reconstructed using pixel-based weights calculated in the intelligent polarization selection process. We showed that fused images by intelligent polarization selection reduced the mean-square error by two orders of magnitude to uncover subtle features of occluded objects. Our intelligent real-time fusion algorithm also achieved two orders of magnitude increase in time performance without compromising image quality. We expect intelligent fusion imaging photonics to play increasingly vital roles in the fields of next generation intelligent robots and autonomous vehicles.


Lighting , Optics and Photonics , Algorithms , Diagnostic Imaging
5.
Small ; 17(21): e2007610, 2021 05.
Article En | MEDLINE | ID: mdl-33856109

Optical manipulation and imaging of nano-objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real-time super-resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation-nanoimaging is reported. The iNC consists of a multimodal voltage-tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano-objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non-invasive post-processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.


Nanostructures , Nanotubes , Diagnostic Imaging , Gold , Optics and Photonics
6.
Small ; 17(5): e2006044, 2021 02.
Article En | MEDLINE | ID: mdl-33448125

The development of sustainable methods for energy-intensive water treatment processes continues to be a challenging issue. Plasmonic-semiconductor nanoparticles, which absorb large amounts of sunlight in the visible range for conversion into chemical energy efficiently, can form the basis of a sustainable water treatment method. However, the potential uses of plasmonic semiconductor particles for water treatment have not been fully explored yet because of the limitations associated with the imbalance between light capture, charge transfer, and the required recycling steps for the particles themselves. Herein, a significantly improved visible-light-induced water treatment method that uses a plasmo-semiconductor nanogap bridge array (PNA) is reported. As an arrangement of antenna-reactors, the PNA enables the balancing of the largely enhanced electromagnetic field in the plasmonic nanogap coupling region and optimal separation of charge carriers in the semiconductor. The simultaneous effects of visible-light absorption and charge transfer lead to the generation of a highly enhanced visible-light-induced OH radical (•OH). Consequently, visible-light-induced 5-log N/N0 water disinfection and 100% chemical decomposition for sustainable water treatment were demonstrated. Owing to the large light absorption, charge carrier utilization, and array-oriented scalability, the PNA will be valuable in various sustainable energy and environmental applications.


Quantum Dots , Water Purification , Light , Semiconductors , Sunlight
7.
Nano Lett ; 15(7): 4564-70, 2015 Jul 08.
Article En | MEDLINE | ID: mdl-26039492

Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.


Aptamers, Nucleotide/chemistry , Gold/chemistry , Matrix Metalloproteinase 3/analysis , Metal Nanoparticles/chemistry , Animals , Cell Line , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Matrix Metalloproteinase 3/metabolism , Mice , Nanotechnology , Optical Imaging , Surface Plasmon Resonance
8.
Syst Biomed (Austin) ; 1(1)2013 Jan.
Article En | MEDLINE | ID: mdl-24224142

Spatiotemporal activity patterns of proteases such as matrix metalloproteinases and cysteine proteases in organs have the potential to provide insight into how organized structural patterns arise during tissue morphogenesis and may suggest therapeutic strategies to repair diseased tissues. Toward imaging spatiotemporal activity patterns, recently increased emphasis has been placed on imaging activity patterns in three-dimensional culture models that resemble tissues in vivo. Here, we briefly review key methods, based on fluorogenic modifications either to the extracellular matrix or to the protease-of-interest, that have allowed for qualitative imaging of activity patterns in three-dimensional culture models. We highlight emerging plasmonic methods that address significant improvements in spatial and temporal resolution and have the potential to enable quantitative measurement of spatiotemporal activity patterns with single-molecule sensitivity.

9.
ACS Nano ; 6(9): 7770-80, 2012 Sep 25.
Article En | MEDLINE | ID: mdl-22827439

The precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas. The siRNA-Au nanoantennas fulfill dual functions as selectively addressable optical receivers and biomolecular emitters of small interfering RNA (siRNA). Using siRNA-Au nanoantennas as optical inputs to existing circuit connections, photonic gene circuits are constructed in living cells. We show that photonic gene circuits are modular, enabling subcircuits to be combined on-demand. Photonic gene circuits open new avenues for engineering functional gene circuits useful for fundamental bioscience, bioengineering, and medical applications.


Gene Regulatory Networks/genetics , Gene Regulatory Networks/radiation effects , Genetic Engineering/methods , Gold/chemistry , Nanostructures/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/radiation effects , Gold/radiation effects , Light , Materials Testing , Nanostructures/radiation effects
10.
Curr Opin Chem Biol ; 14(5): 623-33, 2010 Oct.
Article En | MEDLINE | ID: mdl-20888286

This review focuses on the recent developments in nanoplasmonic gene regulations. Types of nanoplasmonic carriers and DNA/RNA cargo are described. Strategies to liberate cargo from their carriers using NIR and enable on-demand silencing of endogenous intracellular genes are reviewed. In addition to inhibitory effects, exogenous foreign genes are also introduced and expressed on-demand using nanoplasmonic optical switches. The magnitude and timing of genetic activities can therefore be systematically controlled on-demand remotely. Equipped with new nanoplasmonic optics to directly probe the intracellular space, quantitative approaches should capture many dynamic activities within living systems that were otherwise previously impossible to control using conventional methods.


Genetic Engineering/methods , Nanotechnology/methods , Animals , Gene Expression , Gene Expression Regulation , Humans , Optical Phenomena , Spectrophotometry, Infrared
11.
Curr Opin Biotechnol ; 21(4): 489-97, 2010 Aug.
Article En | MEDLINE | ID: mdl-20801636

Free electrons in a noble metal nanoparticle can be resonantly excited, leading to their collective oscillation termed as a surface plasmon. These surface plasmons enable nanoparticles to absorb light, generate heat, transfer energy, and re-radiate incident photons. Creative designs of nanoplasmonic optical antennae (i.e. plasmon resonant nanoparticles) have become a new foundation of quantitative biology and nanomedicine. This review focuses on the recent developments in dual-functional nanoplasmonic optical antennae for label-free biosensors and nanoplasmonic gene switches. Nanoplasmonic optical antennae, functioning as biosensors to significantly enhance biochemical-specific spectral information via plasmon resonance energy transfer (PRET) and surface-enhanced Raman spectroscopy (SERS), are discussed. Nanoplasmonic optical antennae, functioning as nanoplasmonic gene switches to enable spatiotemporal regulation of genetic activity, are also reviewed. Nanoplasmonic molecular rulers and integrated photoacoustic-photothermal contrast agents are also described.


Nanomedicine , Biosensing Techniques , Surface Plasmon Resonance
12.
J Am Chem Soc ; 131(39): 14066-74, 2009 Oct 07.
Article En | MEDLINE | ID: mdl-19746908

Biologically functional cationic phospholipid-gold nanoplasmonic carriers have been designed to simultaneously exhibit carrier capabilities, demonstrate improved colloidal stability, and show no cytotoxicity under physiological conditions. Cargo, such as RNA, DNA, proteins, or drugs, can be adsorbed onto or incorporated into the cationic phospholipid bilayer membrane. These carriers are able to retain their unique nanoscale optical properties under physiological conditions, making them particularly useful in a wide range of imaging, therapeutic, and gene delivery applications that utilize selective nanoplasmonic properties.


Drug Carriers/chemical synthesis , Gold/chemistry , Lipid Bilayers/chemistry , RNA/metabolism , Cations , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Stability , Gene Transfer Techniques , Humans , Light , Metal Nanoparticles , Phospholipids/chemistry , RNA/pharmacology , Scattering, Radiation , Surface-Active Agents/chemistry
13.
Nano Lett ; 9(2): 562-70, 2009 Feb.
Article En | MEDLINE | ID: mdl-19128006

Near infrared-absorbing gold nanoplasmonic particles (GNPs) are used as optical switches of gene interference and are remotely controlled using light. We have tuned optical switches to a wavelength where cellular photodamage is minimized. Optical switches are functionalized with double-stranded oligonucleotides. At desired times and at specific intracellular locations, remote optical excitation is used to liberate gene-interfering oligonucleotides. We demonstrate a novel gene-interfering technique offering spatial and temporal control, which is otherwise impossible using conventional gene-interfering techniques.


RNA Interference , Cell Line , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
...