Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 87(1): 179-192, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418157

RESUMEN

PURPOSE: To perform a quantitative evaluation of myelination on WT and myelin-deficient (shiverer) mouse spinal cords using ultrahigh-b diffusion-weighted imaging (UHb-DWI). METHODS: UHb-DWI of ex vivo on spinal cord specimens of two shiverer (C3HeB/FeJ-shiverer, homozygous genotype for MbPshi ) and six WT (Black Six, C3HeB/FeJ) mice were acquired using 3D multishot diffusion-weighted stimulated-echo EPI, a homemade RF coil, and a small-bore 7T MRI system. Imaging was performed in transaxial plane with 75 × 75 µm2 in-plane resolution, 1-mm-slice thickness, and radial DWI using bmax = 42,890 s/mm2 . Histological evaluation was performed on upper thoracic sections using optical and transmission electron microscopy. Numerical Monte Carlo simulations (MCSs) of water diffusion were performed to facilitate interpretation of UHb-DWI signal-b curves. RESULTS: The white matter ultrahigh-b radial DWI (UHb-rDWI) signal-b curves of WT mouse cords behaved biexponentially with high-b diffusion coefficient DH < 0.020 × 10-3 mm2 /s. However, as expected with less myelination, the signal-b of shiverer mouse cords behaved monoexponentially with significantly greater DH = 0.162 × 10-3 , 0.142 × 10-3 , and 0.164 × 10-3 mm2 /s at anterodorsal, posterodorsal, and lateral columns, respectively. The axial DWI signals of all mouse cords behaved monoexponentially with D = (0.718-1.124) × 10-3 mm2 /s. MCS suggests that these elevated DH are mainly induced by increased water exchange at the myelin sheath. Microscopic results were consistent with the UHb-rDWI findings. CONCLUSION: UHb-DWI provides quantitative differences in myelination of spinal cords from myelin-deficit shiverer and WT mice. UHb-DWI may become a powerful tool to evaluate myelination in demyelinating disease models that may translate to human diseases, including multiple sclerosis.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Animales , Imagen por Resonancia Magnética , Ratones , Vaina de Mielina , Médula Espinal/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...