Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Microorganisms ; 11(11)2023 Nov 11.
Article En | MEDLINE | ID: mdl-38004761

Ulcerative colitis (UC) poses a contemporary medical challenge, with its exact cause still eluding researchers. This is due to various factors, such as the rising incidence, diagnostic complexities, and difficulties associated with its management. We compared the intestinal microbiome of patients with UC to that of healthy controls to determine the qualitative and quantitative changes associated with UC that occur in the intestinal microbiota. The intestinal bacterial abundance in 40 Korean patients with UC and 25 healthy controls was assayed using via next-generation sequencing. There were five major phyla in both groups: Firmicutes (UC patients: 51.12%; healthy controls: 46.90%), Bacteroidota (UC patients: 37.04%; healthy controls: 40.34%), Proteobacteria (UC patients: 6.01%; healthy controls: 11.05%), Actinobacteriota (UC patients: 5.71%; healthy controls: 1.56%), and Desulfobacteriota (UC patients: 0.13%; healthy controls: 0.14%). Firmicutes was more prevalent in patients with UC (51.12%) compared to that of healthy controls (46.90%). Otherwise, Bacteroidota was more prevalent in healthy controls (40.34%) compared to patients with UC (37.04%). Although there was no significant difference, our results showed a substantially lower gut microbiome diversity in patients with UC (mean: 16.5; 95% confidence interval (CI) = 14.956-18.044) than in healthy controls (mean: 17.84; 95% CI = 15.989-19.691), the beta diversity and the flora structure of the microbiome in patients with UC differed from those in healthy controls. This will be helpful for the development of new treatment options and lay the groundwork for future research on UC. To understand the disease mechanism, it is essential to define the different types of microbes in the guts of patients with UC.

2.
Animals (Basel) ; 13(20)2023 Oct 19.
Article En | MEDLINE | ID: mdl-37893988

This study aimed to determine how the route of antimicrobial administration affected the growth performance of weaned piglets. Additionally, we aimed to investigate potential differences between antimicrobial resistance developed by antimicrobials administered orally through drinking water, and those administered through feed, in weaned piglets. The research was undertaken on a farm housing 500 sows and involved 150 weaned piglets at 21 days of age. These piglets were evenly distributed into three groups of equal size: water, feed, and control. Antimicrobials were administered through drinking water and feed in the water and feed groups, respectively, while the control group received no antimicrobial treatment. The observation of piglets continued until they reached 70 days of age. The feed conversion ratio in the water group (1.7 ± 0.78) was significantly higher than in the control (2.4 ± 1.77) and feed (2.7 ± 1.68) groups. Additionally, the route of administration did not affect antimicrobial resistance rates. Based on these results, it can be inferred that administering antimicrobials through drinking water is advantageous for pig farming.

3.
Microorganisms ; 11(8)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37630482

Pathogenic E. coli causes intra- and extraintestinal diseases in humans and pigs and third-generation cephalosporins are the primary option for the treatment of these diseases. The objective of this study was to investigate the characteristics and correlation between CTX-M-producing E. coli from humans and pigs regarding CTX-M-producing E. coli using next-generation sequencing and bioinformatic tools. Among the 24 CTX-M-producing E. coli, three types of CTX-M genes (CTX-M-12, CTX-M-14, and CTX-M-15) were detected in humans and four types of CTX-M genes (CTX-M-14, CTX-M-15, CTX-M-55, and CTX-M-101) were detected in pigs. A total of 24 CTX-M-producing E. coli isolates also showed the following antimicrobial resistance genes: other B-Lactam resistance gene (75.0%); aminoglycoside resistance genes (75.0%); phenicol resistance genes (70.8%); tetracycline resistance genes (70.8%); sulfonamide resistance genes (66.7%); quinolone resistance genes (62.5%); trimethoprim resistance genes (54.2%); and fosfomycin resistance genes (8.3%). FII (92.3%) and FIB (90.9%) were the most common plasmid replicon in humans and pigs, respectively. A total of thirty-eight different genes associated with virulence 24 CTX-M-producing E. coli and all isolates contained at least more than one virulence gene. A total of 24 CTX-M-producing E. coli isolates showed 15 diverse sequence types (STs): thirteen isolates from human belonged to 6 different STs, and 11 isolates from pig belonged to 9 different STs. The presence of virulence genes in E. coli together with antimicrobial resistance genes (including CTX-M genes) emphasizes the necessity of comprehensive surveillance and persistent monitoring of the food chain to avoid all types of bacterial contamination, regardless of human or pig origin.

4.
Open Vet J ; 13(6): 705-714, 2023 06.
Article En | MEDLINE | ID: mdl-37545702

Background: In the porcine industry, Escherichia coli (E. coli) infections have been causing post-weaning diarrhea (PWD) and edema disease (ED) for many years. It is classified into pathotypes and serotypes in animals according to virulence factors. Serotyping is performed for O, K, H, and F antigens, essential for discriminating pathogenicity and epidemiology. Furthermore, E. coli strains that produce F18 fimbriae are major sources of ED and PWD associated with Shiga-toxin producing E. coli (STEC) expressing F18ab and enterotoxigenic E. coli (ETEC) expressing F18ac, respectively. Aim: To investigate the pathogenicity potential and infection characteristics of experimental infection and confirm the pathological features of the Korean STEC/ETEC strains F18ab and F18ac in piglets. Methods: Three-week-old pigs were randomized into three experimental groups: infected G1 (F18ab), infected G2 (F18ac), and G3 (control). General health status was monitored daily, and pathological changes were evaluated. Results: Diarrhea occurred in all infected piglets. Pathological changes were only observed in the small intestine and regional lymph nodes. In G1, mucosal necrosis, inflammatory cell infiltration with hemorrhagic lesions, and apoptotic cell death in the tunica media of arterioles in the small intestine were observed. In contrast, the mucosa and epithelium appeared almost intact, with no abnormal vessel lesions in G2. Conclusion: Both strains, isolated from pigs in Korea, could be infected and did not spread from the alimentary tract to other organs. The pathological features were quite different among the F18 subtypes. The F18ab strain was more virulent than F18ac, and the virulence characteristics of the F18ac strain were more similar to ETEC than STEC.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Swine Diseases , Animals , Diarrhea/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Feces , Republic of Korea/epidemiology , Swine , Swine Diseases/epidemiology
5.
J Glob Antimicrob Resist ; 34: 74-82, 2023 09.
Article En | MEDLINE | ID: mdl-37394034

OBJECTIVES: Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum ß-lactamase (ESBL)/pAmpC ß-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS: Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of ß-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of ß-lactamase genes, conjugation assays were conducted. RESULTS: Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC ß-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC ß-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION: Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.


Escherichia coli Infections , Escherichia coli , Animals , beta-Lactamases/genetics , Cephalosporins/pharmacology , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Farms , Republic of Korea , Swine
6.
Parasitol Res ; 122(9): 2045-2054, 2023 Sep.
Article En | MEDLINE | ID: mdl-37347287

Severe diarrhea was reported in goat kids in Chungcheongbuk-do, Korea, from 2021 to 2023, and Cryptosporidium infection was suspected. To confirm the cause of this outbreak, fecal samples were collected from goat farms where diarrhea had been reported and analyzed for Cryptosporidium infection using a molecular assay. A total of 65 fecal samples, including 37 from goats with diarrhea and 28 from goats without diarrhea, were collected from six goat farms. Forty-eight of the goats were kids (<2 months) and 17 were adults (>1 year). Cryptosporidium was identified in 53.8% (35/65) of total samples. Overall, 86.5% (32/37) of the diarrheic fecal samples tested positive; however, Cryptosporidium was not detected in any fecal sample from non-diarrheic adult goats. Therefore, cryptosporidiosis was significantly associated with diarrhea in goat kids, and adult goats were not responsible for transmission of Cryptosporidium to them. Phylogenetic analysis and molecular characterization revealed two Cryptosporidium species, namely, C. parvum (n = 28) and C. xiaoi (n = 7). In the C. parvum-positive samples, gp60 gene analysis revealed three zoonotic subtypes-IIaA18G3R1, IIdA15G1, and IIdA16G1. To the best of our knowledge, this study is the first to identify C. parvum IIaA18G3R1 and IIdA16G1 in goats, as well as the first to identify C. xiaoi in goats in Korea. These results suggest that goat kids play an important role as reservoir hosts for different Cryptosporidium species and that continuous monitoring with biosecurity measures is necessary to control cryptosporidiosis outbreaks.


Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Goat Diseases , Sheep Diseases , Animals , Sheep , Cryptosporidiosis/epidemiology , Cryptosporidium parvum/genetics , Goats , Phylogeny , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Cryptosporidium/genetics , Diarrhea/epidemiology , Diarrhea/veterinary , Feces , Disease Outbreaks/veterinary , Republic of Korea/epidemiology , Genotype
7.
Animals (Basel) ; 13(7)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37048407

The aim of this study was to compare the virulence factors and antimicrobial resistance of the most common pathogenic Escherichia coli strains in swine and patients with diarrhea in Korea. We examined virulence genes and antimicrobial susceptibility in 85 and 61 E. coli strains isolated from swine and patients with diarrhea, respectively. The most prevalent pathogen in swine was enterotoxigenic E. coli (ETEC) (47.1%), followed by Shiga toxin-producing E. coli (STEC) (32.9%). Similarly, the majority of the patient isolates (50.8%) were proven to be STEC, the most common pathotype, followed by ETEC (23.0%). We found that swine isolates had significantly higher resistance than patient isolates, especially to fluoroquinolones (ciprofloxacin: 37.5% and 16.1%; norfloxacin: 29.7% and 16.1%, respectively). Additionally, sequence type (ST) 100 (swine: 21; patients: 4), ST 1 (swine: 21, patients: 2), ST 10 (swine: 8; patients: 6), ST 641 (swine: 3, patients: 2), and ST 88 (swine: 2, patients: 11) were detected in both swine and humans. In addition, we confirmed that isolates from swine and patients had similar virulence traits and were phylogenetically similar. According to these findings, swine and humans are susceptible to cross infection and the transfer of antimicrobial resistance.

8.
Ann Clin Microbiol Antimicrob ; 22(1): 7, 2023 Jan 19.
Article En | MEDLINE | ID: mdl-36658572

BACKGROUND: Pathogenic Escherichia coli are an important cause of bacterial infections in both humans and pigs and many of antimicrobials are used for the treatment of E. coli infection. The objective of this study was to investigate the characteristics and relationship between humans and pigs regarding third-generation cephalosporin resistance and CMY-2-producing E. coli in Korea. RESULTS: All 103 third-generation cephalosporin-resistant E. coli isolates showed multidrug resistance. Also, except for ß-lactam/ß-lactamase inhibitor combinations, all antimicrobials resistant rates were higher in pigs than in humans. A total of 36 isolates (humans: five isolates; pigs: 31 isolates) were positive for the CMY-2-encoding genes and thirty-two (88.9%) isolates detected class 1 integrons with 10 different gene cassette arrangements, and only 1 isolate detected a class 2 integron. The most common virulence genes in pigs were LT (71.0%), F18 (51.6%), and STb (51.6%), while stx2 (80.0%) was the most frequently detected gene in humans. Stx2 gene was also detected in pigs (6.5%). Interestingly, 36 CMY-2-producing E. coli isolates showed a high diversity of sequence types (ST), and ST88 was present in E. coli from both pigs (11 isolates) and humans (one isolate). CONCLUSION: Our findings suggest that a critical need for comprehensive surveillance of third-generation cephalosporin resistance is necessary to preserve the usefulness of third-generation cephalosporins in both humans and pigs.


Escherichia coli Infections , Escherichia coli , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/drug therapy , beta-Lactamases/genetics , Diarrhea/veterinary , Republic of Korea , Plasmids
9.
BMC Microbiol ; 22(1): 216, 2022 09 15.
Article En | MEDLINE | ID: mdl-36109712

OBJECTIVES: Colibacillosis is a frequent enteric disease in the pig industry that causes significant economic losses. The objective of this study was to investigate the molecular characteristics of fluoroquinolone (FQ)-resistant E. coli isolates from suckling piglets with colibacillosis. RESULTS: A total of 43 FQ-resistant E. coli isolates were tested in this study and all isolates showed multi-drug resistance (MDR) and mutations in quinolone resistance determining regions (gyrA or parC). Especially, FQ-resistant E. coli isolates with double mutations in both gyrA and parC were shown a high FQs minimum inhibitory concentration (≥ 64 mg/L for ciprofloxacin, ≥ 128 mg/L for enrofloxacin, and ≥ 256 mg/L for norfloxacin). Among 43 FQ-resistant E. coli isolates, 12 (27.9%) were showed plasmid-mediated quinolone resistance (PMQR) positive E. coli. Prevalence of PMQR gene, aac(6')-Ib-cr, qnrS, and qepA, were identified in 7, 3, and 2 E. coli isolates, respectively. We identified the following in PMQR-positive E. coli isolates: the tetracycline resistance genes tetD (12 isolates, 100.0%), tetE (12 isolates, 100.0%), tetA (11 isolates, 91.7%), and tetB (1 isolate, 8.3%); ß-lactamases-encoding blaCMY-2 (10 isolates, 83.3%), blaTEM-1 (7 isolates, 58.3%), blaOXA-1 (7 isolates, 58.3%), blaSHV-1 (3 isolates, 16.7%), and blaAAC-2 (1 isolate, 8.3%); and the chloramphenicol resistance genes (10 isolates, 83.3%); the sulfonamide resistance genes sul1 (9 isolates, 75.0%) and sul2 (10 isolates, 83.3%); the aminoglycoside modifying enzyme gene aac(3)-II (2 isolates, 16.7%). The F4 (7 isolates, 58.3%), LT:STb:EAST1 (5 isolates, 41.7%), and paa (3 isolates, 25.0%) were most common fimbrial antigen, combinations of toxin genes, and non-fimbrial adhesins genes, respectively. All PMQR-positive E. coli carried class I integrons but only 4 isolates carried the gene cassette. The most prevalent plasmid replicon was FIB (9 isolates, 75.0%), followed by FIC, HI1, and N (7 isolates, 58.3%), respectively. CONCLUSIONS: Because FQ-resistant E. coli can serve as a reservoir of FQ resistant genetic determinants that can be transferred to pathogenic bacteria in humans or pigs, this represents a public health hazard.


Escherichia coli Infections , Quinolones , Aminoglycosides , Animals , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , DNA Gyrase/genetics , Enrofloxacin , Escherichia coli , Escherichia coli Infections/microbiology , Fluoroquinolones/pharmacology , Norfloxacin , Quinolones/pharmacology , Sulfonamides , Swine , beta-Lactamases
10.
Medicina (Kaunas) ; 58(9)2022 Sep 19.
Article En | MEDLINE | ID: mdl-36143987

Background and Objectives: Diesel exhaust particulate matter (DEPM) is an air pollutant that is associated with asthma. In this study, the therapeutic efficacy of Weissella cibaria strains CMU (Chonnam Medical University) and CMS (Chonnam Medical School) 1, together with the drug Synatura, an anti-tussive expectorant, was investigated in a murine asthma model exacerbated by DEPM. Materials and Methods: BALB/c mice were sensitized with ovalbumin (OVA) before intranasal challenge with OVA and DEPM. W. cibaria CMU, CMS1, and Synatura were administered orally for 21 days. Results: Neither Synatura nor W. cibaria strains affected spleen, liver, or lung weights. W. cibaria strains CMU and CMS1 significantly reduced the levels of interleukin (IL)-4, OVA-specific immunoglobulin E (IgE), and total lung collagen in bronchoalveolar lavage fluid (BALF), similar to those with Synatura, regardless of the oral dose concentration (p < 0.05). In addition, the W. cibaria CMU strain significantly alleviated IL-1ß, IL-6, IL-12, monocyte chemotactic protein-1, and tumor necrosis factor-α in BALF, whereas the CMS1 strain significantly alleviated IL-10 and IL-12 in BALF (p < 0.05); however, Synatura did not show any statistical efficacy against them (p > 0.05). All concentrations of W. cibaria CMU and low concentrations of W. cibaria CMS1 significantly reduced lung bronchiolar changes and inflammatory cell infiltration. Conclusions: In conclusion, W. cibaria CMU in asthmatic mice showed better efficacy than W. cibaria CMS1 in improving asthma exacerbated by DEPM exposure, as well as better results than pharmaceuticals.


Air Pollutants , Asthma , Animals , Asthma/chemically induced , Asthma/drug therapy , Chemokine CCL2/therapeutic use , Cytokines , Disease Models, Animal , Expectorants/therapeutic use , Humans , Immunoglobulin E , Inflammation , Interleukin-10 , Interleukin-12 , Interleukin-6 , Lung , Mice , Mice, Inbred BALB C , Ovalbumin , Particulate Matter , Tumor Necrosis Factor-alpha , Vehicle Emissions/toxicity , Weissella
11.
BMC Microbiol ; 22(1): 199, 2022 08 16.
Article En | MEDLINE | ID: mdl-35974313

BACKGROUND: Escherichia (E.) coli causes colibacillosis in swine and humans, and is frequently associated with antimicrobial resistance. In this study we aimed to compare antimicrobial resistance, O-serogroups, virulence genes, and multi-locus sequence type of E. coli between isolates from pigs and patients suffering from diarrhea, and the most prevalent pathogenic E. coli strain from swine isolates in Korea. METHODS: We tested 64 and 50 E. coli strains from pigs and patients suffering from diarrhea for antimicrobial susceptibility test, virulence genes, O-serogroups, and multi-locus sequence typing. RESULTS: We confirmed that isolates from swine showed significantly higher resistance than from those from patients, especially to fluoroquinolone (ciprofloxacin: 37.5 and 10.0%; norfloxacin: 29.7 and 8.0%, respectively). Stx1 (46.0%) was most frequently detected in patients followed by stx2 (38.0%). There was no significant difference in stx2 (swine: 23.4%, patients: 38.0%). In isolates from patients, O157 (12.0%) was the most prevalent O-serogroup, and two isolates (3.1%) from pigs were confirmed to have O157. Additionally, sequence type (ST) 10 (swine: 6 isolates, patients: 2 isolates) and ST 88 (swine: 2 isolates, patients: 1 isolate) were simultaneously detected. CONCLUSIONS: We found that both isolates from swine and human had the stx2 gene, which could cause severe disease. Moreover, antimicrobial resistance was significantly higher in pigs than in patients. These results suggest that pig could act as a reservoir in human infection and antimicrobial resistance could be transferred to human from pigs.


Escherichia coli Infections , Escherichia coli Proteins , Swine Diseases , Animals , Anti-Bacterial Agents/pharmacology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Humans , Multilocus Sequence Typing , Phylogeny , Swine , Virulence/genetics
12.
Toxicol Res ; 38(3): 293-310, 2022 Jul.
Article En | MEDLINE | ID: mdl-35865276

Weissella cibaria belongs to the Lactobacillaceae family and has been isolated from traditional fermented foods and saliva of children with good oral health. Previous investigations have shown that W. cibaria CMU (Chonnam Medical University) is expected to be safe based on results of in silico and in vitro analyses. However, there is a lack of studies assessing its safety in vivo. A toxicological safety evaluation of W. cibaria CMU was performed using an acute oral safety study in rats, a 14-day oral range finding study, a subsequent 13-week oral toxicity study in rats and a genetic toxicity battery (in vitro bacterial reverse mutation, in vitro chromosome aberration in Chinese Hamster Ovary cells and in vivo micronucleus study in mice). The results of the studies in rats showed that the acute lethal dose of W. cibaria CMU is > 5000 mg/kg body weight (bw)/day (1.8 × 109 CFU/kg bw/day) and the 14-day or 13-week no observed adverse effect level (NOAEL) is 5000 mg/kg bw/day (1.8 × 109 CFU/kg bw/day), the highest dose administered. W. cibaria CMU was non-mutagenic in the bacterial reverse mutation test and non-clastogenic or aneugenic in vitro and in vivo. In conclusion, the toxicological studies performed demonstrated W. cibaria CMU to be a safe strain to consume. This study is the first study examining the potential of a W. cibaria strain to cause genetic toxicity and subchronic toxicity in rats according to the Organization for Economic Cooperation and Development guidelines.

13.
Res Vet Sci ; 150: 137-143, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-35830753

A total of 690 pathogenic Escherichia (E.) coli isolates from weaned piglets were examined for antimicrobial resistance phenotypes, resistance genes, and virulence gene profiles. Also, 29 enterotoxigenic E. coli (ETEC) and 35 Shiga-toxin producing E. coli (STEC) isolates were analyzed using multi-locus sequence typing (MLST). Comparisons of the associations between antimicrobial resistance phenotypes, resistance genes, and virulence genes were performed separately by assessing odds ratio (OR). Although majorities of associations were not confirmed however, we found that associations between specific virulence factors-antimicrobial resistance. F18 encoding isolates showed association with resistance to cefazolin (OR = 3.08) and cefoxitin (OR = 3.65), and also with antimicrobial resistance gene mcr-3 (OR = 4.58). There was a high correlation between F4-STb (OR = 13.56), F4-LT (OR = 8.77), F4-EAST-I (OR = 4.97), and F18-Stx2e (OR = 3.83). Most of ETEC (21 of 29, 72.4%) isolates were assigned to ST100, and 20 of 35 STEC isolates (57.1%) were ST1. There were 5 clusters, and each cluster showed specific antimicrobial resistance patterns. Cluster I showed resistance to gentamicin, streptomycin, neomycin, nalidixic acid, ciprofloxacin, norfloxacin, trimethoprim / sulfamethoxazole, and tetracyclines whereas, cluster V showed resistance to ampicillin, amoxicillin / clavulanic acid, cephalothin, cefoxitin, cefazolin, norfloxacin, and colistin. Although there is need to do more experiments to clarify why certain virulence factors showed relationship with antimicrobial resistance, it is clear that there is a significant association between specific virulence genes and antimicrobial resistance in E. coli from weaned piglets with enteric colibacillosis in Korea.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Anti-Bacterial Agents/pharmacology , Cefazolin , Cefoxitin , Diarrhea/pathology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/pathology , Escherichia coli Infections/veterinary , Multilocus Sequence Typing/veterinary , Norfloxacin , Swine , Swine Diseases/epidemiology , Swine Diseases/pathology , Virulence Factors/genetics
14.
Korean J Parasitol ; 60(3): 207-211, 2022 Jun.
Article En | MEDLINE | ID: mdl-35772740

This study aimed to examine the distribution of gastrointestinal parasitic infections in domestic pigs in the Republic of Korea. From May 2020 to October 2021, 364 pig fecal samples were collected from 75 farms in 7 Provinces and microscopically examined. A total of 170 (46.7%) pigs were infected with at least one of the following parasites: Balantioides coli, strongyles, Ascaris suum, Trichuris suis, and coccidia. By parasite species, B. coli, strongyles, A. suum, T. suis, and coccidia oocysts or eggs were detected in 144 (39.6%), 24 (6.6%), 14 (3.8%), 4 (1.1%), and 1 (0.3%) samples, respectively. One hundred fifty-four, 15, and 1 cases showed single, double, and triple infections, respectively. Of the swine fecal samples from 75 farms, 69 specimens (92.0%) were infected with 1 or more parasites. All surveyed farms across the country exhibited a positive rate of over 30%, among which the highest positive rate was 65.0% in Chungcheongnam-do, and Jeollabuk-do was followed by 61.9%. Winter showed a statistically lower prevalence than other seasons. This study showed that gastrointestinal parasites are prevalent in pigs in Korea, although the diversity of parasites is low.


Intestinal Diseases, Parasitic/veterinary , Parasites/classification , Swine Diseases/epidemiology , Swine Diseases/parasitology , Animals , Feces/parasitology , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Parasites/isolation & purification , Prevalence , Republic of Korea/epidemiology , Seasons , Sus scrofa , Swine
15.
Animals (Basel) ; 11(9)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34573625

Balantioides coli is a zoonotic protozoan parasite whose main reservoir is pigs. Recent studies have shown that B. coli variant A but not B has zoonotic potential. While B. coli infection has been reported in different animals and countries, the prevalence of the zoonotic variant is limited due to a lack of molecular information. Therefore, this study investigated the prevalence of B. coli in domestic pigs in Korea and assessed its zoonotic potential. A total of 188 pig fecal samples were collected from slaughterhouses in Korea. B. coli was identified by microscopy and molecular methods. B. coli was identified in 79 (42.9%) and 174 (94.6%) samples by microscopy and polymerase chain reaction (PCR), respectively. This study also developed a PCR-restriction fragment length polymorphism (PCR-RFLP) method to differentiate B. coli variant A from B without sequence analysis. Using this method, 62 (33.7%) and 160 (87.0%) samples were positive for variants A and B, respectively, and 48 (26.1%) samples were co-infected with both variants. Sequence and phylogenetic analyses showed a high genetic diversity of B. coli in pigs in Korea. To our knowledge, this is the first study to develop a method to differentiate B. coli variants A and B without sequence analysis and to assess the molecular epidemiology of B. coli in pigs. Continuous monitoring of zoonotic B. coli in pigs should be performed as pigs are the main source of human balantidiasis.

16.
Korean J Parasitol ; 59(2): 153-157, 2021 Apr.
Article En | MEDLINE | ID: mdl-33951771

This study reports the first two clinical cases of spirometrosis caused by Spirometra sp. in cats in Korea. In these two cases, the cats vomited, and long proglottids of tapeworm were recovered. The sick cats presented with anorexia and lethargy. However, they unexpectedly showed no diarrhea, which is the main symptom of spirometrosis. Based on a fecal floatation test as well as morphological and molecular analyses, the parasite was diagnosed as Spirometra sp. The 2 cases were treated with praziquantel. This study suggests regular monitoring of health and deworming in companion animals, even when animals are well cared for, with regular preventive medication. Additionally, spirometrosis should be considered in the differential diagnosis in cases of gastrointestinal symptoms in Spirometra endemic areas.


Cat Diseases/parasitology , Sparganosis/veterinary , Spirometra/isolation & purification , Animals , Anthelmintics/administration & dosage , Cat Diseases/drug therapy , Cats , Praziquantel/therapeutic use , Republic of Korea , Sparganosis/drug therapy , Sparganosis/parasitology , Spirometra/classification , Spirometra/drug effects , Spirometra/genetics
17.
Vet Sci ; 9(1)2021 Dec 21.
Article En | MEDLINE | ID: mdl-35051085

This study aimed to determine the prevalence of several pathovirotypes and evaluate the association of haemolysis with the virotypes of pathogenic E. coli isolated from post-weaning piglets in South Korea from 2015 to 2019. We isolated 890 E. coli and tested for O-serogroups, virulence genes, haemolysis, and multilocus sequence typing. The predominant virotypes were STb:EAST1:AIDA-I, F18b:Stx2e:AIDA-I, F18:STa:STb:Stx2e, and eae:Paa in enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC), ETEC/STEC, and enteropathogenic E. coli (EPEC), respectively. Regarding serogroups, O139, O149, O141, and O121 were mostly detected in F18:Stx2e:AIDA-I, F4:LT:STb:EAST1, F18:STa:STb, and F18:Stx2e:EAST1, respectively. There was a significant change in the frequency of the O141:F18ac:STa:STb (an increase from 1.6% to 10.1%) and O139:F18ab:Stx2e:AIDA-I (a decrease from 13.0% to 5.3%) virotypes in ETEC and STEC, respectively, from 2015 to 2019. The O141:F18ac:STa:STb virotype was mostly detected in the central area and was spreading to the southern area. The odds ratios between haemolysis and virotypes were 11.0, 6.25, and 8.57 in F18:STa:STb, F18:Stx2e:AIDA-I, and F4:LT:STb:EAST1, respectively. Our findings provide insights regarding the recent prevalence of pathogenic E. coli in South Korea and could be used for the development of vaccines for E. coli responsible for PWD and ED in post-weaning piglets.

18.
Metabolites ; 10(12)2020 Dec 19.
Article En | MEDLINE | ID: mdl-33352805

The effects of black ginseng, which has many kinds of biological activities, on dogs was investigated. Serum samples of beagle dogs, which were fed with black ginseng for 8 weeks, were measured using high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectrometry. Acquired NMR data from the serum of dogs fed for 0, 4, and 8 weeks were analyzed by metabolic profiling and multivariate statistical analysis. In statistical analysis and biomarker analysis results of metabolite profiles, formate, glutamine, histidine, isoleucine, leucine, proline, and valine had variable importance in projection (VIP) scores above 1.0 and excellent area under the curve (AUC) values of receiver operating characteristic (ROC) curves above 0.9. In the result of multivariate statistical analysis, the score plot showed the discrimination between before and after feeding of black ginseng. These differences in metabolic profiles are considered to be due to the involvement of metabolic processes following black ginseng administration, such as enhancing immunity and energy metabolism. Through metabolomics analysis, we confirmed the biological efficacy of black ginseng in dogs and also confirmed that metabolomics can be applied to the pet health industry.

19.
Molecules ; 25(16)2020 Aug 18.
Article En | MEDLINE | ID: mdl-32824755

Black ginseng (BG) has better health benefits than white ginseng. The intake of BG changes the levels of metabolites, such as amino acids, fatty acids, and other metabolites. However, there is no research on the effect of BG extract intake on the metabolic profile of dog serum. In this study, serum metabolic profiling was conducted to investigate metabolic differences following the intake of BG extracts in beagle dogs. The beagle dogs were separated into three groups and fed either a regular diet (RD, control), RD with a medium concentration of BG extract (BG-M), or RD with a high concentration of BG extract (BG-H). Differences were observed among the three groups after the dogs ingested the experimental diet for eight weeks. The concentrations of alanine, leucine, isoleucine, and valine changed with the intake of BG extracts. Furthermore, levels of glycine and ß-alanine increased in the BG-H group compared to the control and BG-M groups, indicating that BG extracts are associated with anti-inflammatory processes. Our study is the first to demonstrate the potential anti-inflammatory effect of BG extract in beagle dogs. Glycine and ß-alanine are proposed as candidate serum biomarkers in dogs that can discriminate between the effects of ingesting BG-H.


Anti-Inflammatory Agents/pharmacology , Diet , Inflammation/drug therapy , Metabolome/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Animals , Dogs , Female , Inflammation/blood , Inflammation/metabolism , Male
20.
J Anim Sci Technol ; 62(4): 543-552, 2020 Jul.
Article En | MEDLINE | ID: mdl-32803186

For efficient prevention and treatment of enteric colibacillosis, understanding about latest virulence factors and antimicrobial resistance of Escherichia coli is essentially needed. The aim of this study was to survey antimicrobial resistance and determine the prevalence of fimbriae and enterotoxin genes among 118 pathogenic E. coli isolates obtained from Korean pigs with diarrhea between 2016 and 2017. The genes for the toxins and adhesins were amplified by polymerase chain reaction (PCR). The susceptibility of the E. coli isolates to antimicrobials were tested using the standard Kirby-Bauer disk diffusion method. The most prevalent fimbrial antigen was F18 (40.7%), followed by F4 (16.9%), and the most prevalent combinations of toxin genes were Stx2e (21.2%), STb:EAST-1 (19.5%), and STa:STb (16.9%), respectively. Among the pathotypes, enterotoxigenic E. coli (ETEC) was the most predominant (67.8%), followed by Shiga-toxin producing E. coli (STEC, 23.7%). We confirmed high resistance rates to chloramphenicol (88.1%), tetracycline (86.4%), streptomycin (86.4%), and ampicillin (86.4%). And the majorities of isolates (90.7%) showed multi-drug resistance which means having resistance to 3 or more subclasses of antimicrobials. Results of this study can be a source of valuable data for investigating the epidemiology of and control measures for enteric colibacillosis in Korean piggeries.

...