Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264093

RESUMEN

BACKGROUND: Plant-based beverages have recently seen a significant increase in market demand. However, many of these products suffer from poor emulsion stability and low protein content. Gums have commonly been used to enhance emulsion stability but they do not improve the amino acid profile. This study investigated the use of multiples plant proteins to enhance both the stability and nutritional value of plant-based beverages. RESULT: Pea and rice bran proteins both enhanced emulsion stability. Pea protein enhanced the viscosity of the continuous phase whereas rice bran protein lowered interfacial tension. When applied synergistically, competitive adhesion occurred. Rice bran protein gradually displaced pea protein from the oil droplet surface as its concentration increased, leading to emulsion destabilization due to the displaced pea protein. The use of high-pressure homogenization further enhanced the stability of the emulsion by unfolding protein partially. However, increasing homogenization pressure (>500 Bar) and homogenization cycle (>2 cycles) led to protein aggregation due to excessive exposure of its hydrophobic core. The emulsion formed was resistant to coalescence at 4 °C for 28 days and was stable under high pH and low ionic conditions. CONCLUSION: The synergistic combination of plant proteins and the effective utilization of co-processing (homogenization) can enhance the functionality of the individual proteins significantly, leading to the formation of a stable emulsion. The use of plant protein mixture as a stabilizer not only improved the emulsion stability but also ensured a plant-based beverage with a complete amino acid profile for the vegan community. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
J Sci Food Agric ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258418

RESUMEN

BACKGROUNDS: Glycerolysis, with its advantages of readily available raw materials, simple operation, and mild reaction conditions, is a primary method for producing diacylglycerol (DAG). However, enzymatic glycerolysis faces challenges such as high enzyme costs, low reuse efficiency, and poor stability. The study aims to develop a cost-effective immobilized enzyme by covalently binding lipase to pre-activated carriers through the selection of suitable lipases, carriers, and activating agents. The optimization is intended to improve the glycerolysis reaction for efficient DAG production. RESULTS: Lipase CN-TL (from Thermomyces lanuginosus) was selected through glycerolysis reaction and molecular docking to catalyze the glycerolysis reaction. Optimizing the immobilization method by covalently binding CN-TL to poly(ethylene glycol) diglycidyl ether (PEGDGE)-preactivated resin LX-201A resulted in the preparation of the immobilized enzyme TL-PEGDGE-LX. The immobilized enzyme retained over 90% of its initial activity after five consecutive reactions, demonstrating excellent reusability. The DAG content in the product remained at 84.8% of its initial level, further highlighting the enzyme's potential for reusability and its promising applications in the food and oil industries. CONCLUSIONS: The immobilized lipase TL-PEGDGE-LX, created by covalently immobilizing lipase CN-TL on PEGDGE-preactivated carriers, demonstrated broad applicability and excellent reusability. This approach offers an economical and convenient immobilization strategy for the enzymatic glycerolysis production of DAG. © 2024 Society of Chemical Industry.

3.
Food Res Int ; 194: 114900, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232527

RESUMEN

Diacylglycerol (DAG) is generally considered one of the precursors of 3-chloropropanol esters (3-MCPDE) and glycidyl esters (GEs). This study aimed to evaluate static heating and stir-frying properties of peanut oil (PO) and PO based 58% and 82% DAG oils (PDAG-58 and PDAG-82). Observations revealed that, phytonutrient levels notably diminished during static heating, with PDAG exhibiting reduced oxidative stability, but maintaining a stability profile similar to PO over a short period. During stir-frying, 3-MCPDE content initially increased and then decreased whereas the opposite was observed for GEs. Furthermore, as temperature, and NaCl concentration increased, there was a corresponding increase in the levels of 3-MCPDE and GEs, although remained within safe limits. When used in suitable concentrations, these findings underscore the potential of DAG, as a nutritionally rich and oxidatively stable alternative to conventional cooking oils, promoting the use of DAG edible oil in heat-cooked food systems.


Asunto(s)
Culinaria , Diglicéridos , Ésteres , Calor , Aceite de Cacahuete , Diglicéridos/química , Aceite de Cacahuete/química , Culinaria/métodos , Oxidación-Reducción , Fitoquímicos/análisis , Fitoquímicos/química , alfa-Clorhidrina
4.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274989

RESUMEN

In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase.


Asunto(s)
Diglicéridos , Estabilidad de Enzimas , Enzimas Inmovilizadas , Lipasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Diglicéridos/química , Concentración de Iones de Hidrógeno , Glicerol/química , Temperatura , Eurotiales/enzimología , Biocatálisis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
5.
Food Chem ; 461: 140879, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154466

RESUMEN

Currently, the poor whipping capabilities of anhydrous milk fat (AMF) in aerated emulsion products are a major obstacle for their use in beverages like tea and coffee, as well as in cakes and desserts, presenting fresh hurdles for the food industry. In this study, the mechanism of action of diacylglycerols (DAGs) with different carbon chain lengths and degrees of saturation on the partial coalescence of aerated emulsions was systematically investigated from three fundamental perspectives: fat crystallization, air-liquid interface rheology, and fat globule interface properties. The optimized crystallization of long carbon chain length diacylglycerol (LCD) based on stearate enhances interactions between fat globules at the air-liquid interface (with an elastic modulus E' reaching 246.42 mN/m), leading to a significantly reduced interface membrane strength. This promotes fat crystal-membrane interactions during whipping, resulting in a thermally stable foam structure with excellent shaping capability due to enhanced partial coalescence of fat globules. Although Laurate based medium carbon chain length diacylglycerol (MCD) promoted fat crystallization and optimized interface properties, it showed weaker foam properties because it did not adequately encapsulate air bubbles during whipping. Conversely, oleate long carbon chain length diacylglycerol (OCD) proved to be ineffective in facilitating fat crystal-membrane interaction, causing foam to have a subpar appearance. Hence, drawing from the carefully examined fat crystal-membrane interaction findings, a proposed mechanism sheds light on how DAGs impact the whipping abilities of aerated emulsions. This mechanism serves as a blueprint for creating aerated emulsions with superior whipping capabilities and foam systems that are resistant to heat.


Asunto(s)
Cristalización , Diglicéridos , Emulsiones , Diglicéridos/química , Emulsiones/química , Animales , Reología , Leche/química , Gotas Lipídicas/química
6.
J Agric Food Chem ; 72(35): 19480-19493, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171455

RESUMEN

Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. ß-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.


Asunto(s)
Caseínas , Diglicéridos , Nanopartículas , Proteína de Suero de Leche , Nanopartículas/química , Diglicéridos/química , Proteína de Suero de Leche/química , Caseínas/química , Tamaño de la Partícula , Termodinámica , Lípidos/química , Adsorción , Liposomas
7.
Bioresour Technol ; 412: 131368, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209228

RESUMEN

Partial acylglycerols are valued for their emulsifying and stabilizing properties, yet precise green synthesis remains challenging due to low yield and selectivity. This study aimed to elucidate the "lipase selectivity-substrate structure-product composition" relationship to enhance the yield of targeted partial acylglycerol. The results showed that lipase exhibited a greater selectivity towards fatty acids with shorter chain lengths and higher unsaturation. Hydroxyl donors also affected the esterification process, with the enzyme-acyl complex exhibiting selectivity towards hydroxyl donors as follows: glycerol > monoacylglycerol > diacylglycerol. Substrate ratio significantly influenced enzymatic reactions; a 10:1 ratio favored triacylglycerol formation (>80 %), while a 1:1 ratio produced > 90 % partial acylglycerols. Molecular docking simulations revealed that substrates primarily interacted with lipase through hydrogen bonding and hydrophobic interactions. A comprehensive understanding of lipase selectivity patterns could facilitate the design of more efficient reaction systems, enabling the conversion of basic lipid resources into desired high value-added products.


Asunto(s)
Candida , Lipasa , Simulación del Acoplamiento Molecular , Lipasa/metabolismo , Esterificación , Especificidad por Sustrato , Candida/enzimología , Solventes/química , Glicéridos/química , Glicéridos/metabolismo , Biocatálisis , Modelos Moleculares
8.
J Food Sci ; 89(8): 5031-5046, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992871

RESUMEN

Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.


Asunto(s)
Carotenoides , Celulosa , Nanofibras , Aceite de Palma , Aceite de Palma/química , Margarina , Celulosa/química , Nanofibras/química , Nanofibras/ultraestructura , Carotenoides/química , Tamaño de la Partícula , Emulsiones/química , Viscosidad , Temperatura , Elasticidad , Oxidación-Reducción , Color , Sustitutos de Grasa/química , Cápsulas/química , Arecaceae/química
9.
Food Chem ; 456: 140005, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870815

RESUMEN

The major lipids and antioxidant activities of Asterias rolleston gonad lipids were evaluated systematically. Major lipids of A. Rolleston gonad lipids were triacylglycerols (TAGs) and phospholipids (PLs). Total lipids were composed of 15.62% of polyunsaturated fatty acids (PUFAs), and 40.81% of monounsaturated fatty acids (MUFAs). The most abundant PUFA were C20:5n-3 (EPA) (6.28%) and C22:6n-3 (DHA) (5.80%). Predominantly composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), polar lipids were rich in PUFAs and could contain up to 34.59% EPA and DHA, and PE and PI (phosphatidylinositol) were also found to be the main carriers of EPA and ARA (arachidonic acid) in polar lipids. The MUFA and PUFA of Sn-2 in TAG are 39.72% and 30.37%, respectively. A total of 64 TAG species were identified, with Eo-P-M, Eo-Eo-M, and M-M-Eo being the main TAGs components. Moreover, A. rollestoni gonad lipids exhibited potent radical scavenging activities and reducing power in a dose-dependent manner.


Asunto(s)
Antioxidantes , Ácidos Grasos Omega-3 , Gónadas , Estrellas de Mar , Antioxidantes/química , Antioxidantes/análisis , Animales , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/química , Estrellas de Mar/química , Gónadas/química , Gónadas/metabolismo , Lípidos/química , Fosfolípidos/química , Fosfolípidos/análisis
10.
Food Chem ; 457: 140077, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905833

RESUMEN

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.


Asunto(s)
Butileno Glicoles , Enterococcus faecium , Fermentación , Lino , Glucósidos , Lignanos , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , Lino/microbiología , Butileno Glicoles/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Enterococcus faecium/metabolismo , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Biotransformación , Microbiota , Humanos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
11.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675667

RESUMEN

The process of lipid crystallization influences the characteristics of lipid. By changing the chemical composition of the lipid system, the crystallization behavior could be controlled. This review elucidates the internal factors affecting lipid crystallization, including triacylglycerol (TAG) structure, TAG composition, and minor components. The influence of these factors on the TAG crystal polymorphic form, nanostructure, microstructure, and physical properties is discussed. The interplay of these factors collectively influences crystallization across various scales. Variations in fatty acid chain length, double bonds, and branching, along with their arrangement on the glycerol backbone, dictate molecular interactions within and between TAG molecules. High-melting-point TAG dominates crystallization, while liquid oil hinders the process but facilitates polymorphic transitions. Unique molecular interactions arise from specific TAG combinations, yielding molecular compounds with distinctive properties. Nanoscale crystallization is significantly impacted by liquid oil and minor components. The interaction between the TAG and minor components determines the influence of minor components on the crystallization process. In addition, future perspectives on better design and control of lipid crystallization are also presented.


Asunto(s)
Cristalización , Triglicéridos , Triglicéridos/química , Lípidos/química , Ácidos Grasos/química
12.
Food Chem ; 449: 139243, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608605

RESUMEN

Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.


Asunto(s)
Lino , Péptidos Cíclicos , Semillas , Lino/química , Semillas/química , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/análisis , Manipulación de Alimentos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
13.
Food Chem ; 444: 138635, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38325087

RESUMEN

The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.


Asunto(s)
Grasas , Ácidos Grasos , Animales , Bovinos , Esterificación , Grasas/química , Triglicéridos/química , Ácidos Grasos/química , Aceites de Plantas/química
14.
J Sci Food Agric ; 104(7): 3958-3970, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38284502

RESUMEN

BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate. RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention. CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ácidos Grasos , Aceites de Plantas , Aceite de Palma/química , Aceites de Plantas/química , Ácidos Grasos/química , Ácidos Grasos no Esterificados , Oxidación-Reducción
15.
Int J Biol Macromol ; 255: 128086, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981278

RESUMEN

Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 µM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.


Asunto(s)
Quitosano , Lino , Nanopartículas , Ácido Hialurónico , Emulsiones , Tamaño de la Partícula
16.
Annu Rev Food Sci Technol ; 15(1): 409-430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38134384

RESUMEN

Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.


Asunto(s)
Lípidos , Lípidos/química , Tecnología de Alimentos/métodos , Gases em Plasma/química , Ozono/química , Manipulación de Alimentos/métodos
17.
Foods ; 12(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38137235

RESUMEN

Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.

18.
Foods ; 12(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37238863

RESUMEN

Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.

19.
J Food Sci Technol ; 60(4): 1222-1236, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36936117

RESUMEN

Oil has extensively been extracted from oil-bearing crops and traded globally as a major food commodity. There is always a huge demand from the fats and oils industries to increase oil yield because of profitability benefits. If extraction is conducted under mild operating conditions to preserve and improve the oil quality, then it would be an added value. Ultrasound that works on the cavitational action helps to fulfil the gap. Ultrasound is gaining tremendous interest as an alternative to replace the current conventional extractions approach because of its multiple benefits. Cavitation generated by ultrasound eases the release of oil from cell matrices, thereby allowing the extraction to be carried out under mild processing conditions. The effect enhances the oil yield whilst preserving the quality of the oil. In ultrasound, green solvents can be used to replace toxic organic solvents. Recent up-to-date approaches utilised a combination of ultrasound with enzyme, microwave and supercritical technology to further enhance the oil extraction. This review highlights a comprehensive work of the impact of ultrasound and ultrasound in combination with other technologies on oil extraction, which emphasises the extraction yield and physicochemical properties of the oil, such as fatty acid composition, oxidative stability with the retention of the lipophilic phytochemicals and iodine, saponification values and colour parameters. Understanding of ultrasonication techniques for oil extraction served to be essential and useful information for the fats and oils scientists from academia and industries to explore the possibility of employing a sustainable and mild approaches for extracting oil from various crops.

20.
Food Chem ; 412: 135558, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36716631

RESUMEN

Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the ß' to the ß form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.


Asunto(s)
Lipasa , Aceites de Plantas , Aceite de Palma/química , Aceites de Plantas/química , Lipasa/química , Ácidos Grasos/química , Triglicéridos/química , Glicéridos/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA