Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Mar Pollut Bull ; 202: 116306, 2024 May.
Article En | MEDLINE | ID: mdl-38574500

In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.


Daphnia , Oxidative Stress , Water Pollutants, Chemical , Animals , Daphnia/physiology , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Hypoxia , Daphnia magna
2.
J Hazard Mater ; 465: 132877, 2024 03 05.
Article En | MEDLINE | ID: mdl-38016313

Rising ocean temperatures are driving unprecedented changes in global marine ecosystems. Meanwhile, there is growing concern about microplastic and nanoplastic (MNP) contamination, which can endanger marine organisms. Increasing ocean warming (OW) and plastic pollution inevitably cause marine organisms to interact with MNPs, but relevant studies remain sparse. Here, we investigated the interplay between ocean warming and MNP in the marine water flea Diaphanosoma celebensis. We found that combined exposure to MNPs and OW induced reproductive failure in the F2 generation. In particular, the combined effects of OW and MNPs on the F2 generation were associated with key genes related to reproduction and stress response. Moreover, populations of predatory bacteria were significantly larger under OW and MNP conditions during F2 generations, suggesting a potential link between altered microbiota and host fitness. These results were supported by a host transcriptome and microbiota interaction analysis. This research sheds light on the complex interplay between environmental stressors, their multigenerational effects on marine organisms, and the function of the microbiome.


Cladocera , Microbiota , Water Pollutants, Chemical , Animals , Microplastics/pharmacology , Plastics , Temperature , Water Pollutants, Chemical/pharmacology , Aquatic Organisms
3.
Aquat Toxicol ; 263: 106685, 2023 Oct.
Article En | MEDLINE | ID: mdl-37690363

Global deoxygenation in aquatic systems is an increasing environmental problem, and substantial oxygen loss has been reported. Aquatic animals have been continuously exposed to hypoxic environments, so-called "dead zones," in which severe die-offs among organisms are driven by low-oxygen events. Multiple studies of hypoxia exposure have focused on in vivo endpoints, metabolism, oxidative stress, and immune responses in aquatic invertebrates such as molluscs, crustaceans, echinoderms, and cnidarians. They have shown that acute and chronic exposure to hypoxia induces significant decreases in locomotion, respiration, feeding, growth, and reproduction rates. Also, several studies have examined the molecular responses of aquatic invertebrates, such as anaerobic metabolism, reactive oxygen species induction, increased antioxidant enzymes, immune response mechanisms, regulation of hypoxia-inducible factor 1-alpha (HIF-1α) genes, and differently expressed hemoglobin/hemocyanin. The genetic basis of those molecular responses involves HIF-1α pathway genes, which are highly expressed in hypoxic conditions. However, the identification of HIF-1α-related genes and understanding of their applications in some aquatic invertebrates remain inadequate. Also, some species of crustaceans, rotifers, sponges, and ctenophores that lack HIF-1α are thought to have alternative defense mechanisms to cope with hypoxia, but those factors are still unclear. This review covers the formation of hypoxia in aquatic environments and the various adverse effects of hypoxia on aquatic invertebrates. The limitations of current hypoxia research and genetic information about the HIF-1α pathway are also discussed. Finally, this paper explains the underlying processes of the hypoxia response and presents an integrated program for research about the molecular mechanisms of hypoxic stresses in aquatic invertebrates.

4.
J Hazard Mater ; 459: 132026, 2023 10 05.
Article En | MEDLINE | ID: mdl-37473567

Microfibers are the most common type of microplastics in freshwater environments. Anthropogenic climate stressors, such as freshwater acidification (FA), can interact with plastic pollution to disrupt freshwater ecosystems. However, the underlying mechanisms responsible for the interactive effects of microfibers and FA on aquatic organisms remain poorly understood. In this study, we investigated individual Daphnia magna-microbiota interactions affected by interactions between microfibers and FA (MFA). We found that the accumulated amount of microfibers in pH-treatment groups was significantly higher than in the control groups, resulting in negative consequences on reproduction, growth, and sex ratio. We also observed that MFA interactions induced immunity- and reproduction-related biological processes. In particular, the abundance of pathogenic bacteria increased only in MFA groups, indicating that MFA interactions can cause intestinal damage. Our integrated analysis of microbiomes and host transcriptomes revealed that synergistic adverse effects of MFAs are closely related to changes in microbial communities, suggesting that D. magna fitness and the microbial community are causally linked. These finding may help elucidate the toxicity mechanisms governing the responses of D. magna to microfibers and acidification interactions, and to host-microbiome-environment interactions.


Cladocera , Microbiota , Water Pollutants, Chemical , Animals , Daphnia , Plastics , Fresh Water , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 449: 131037, 2023 05 05.
Article En | MEDLINE | ID: mdl-36842400

Ocean acidification (OA) is one of many major global climate changes that pose a variety of risks to marine ecosystems in different ways. Meanwhile, there is growing concern about how nanoplastics (NPs) affect marine ecosystems. Combined exposure of marine organisms to OA and NPs is inevitable, but their interactive effects remain poorly understood. In this study, we investigated the multi- and transgenerational toxicity of NPs on copepods under OA conditions for ten generations. The findings revealed that OA and NPs have a synergistic negative effect on copepod reproduction across generations. In particular, the transgenerational groups showed reproductive impairments in the F1 and F2 generations (F1T and F2T), even though they were never exposed to NPs. Moreover, our epigenetic examinations demonstrated that the observed intergenerational reproductive impairments are associated with differential methylation patterns of specific genes, suggesting that the interaction of OA and NPs can pose a significant threat to the sustainability of copepod populations through epigenetic modifications. Overall, our findings provide valuable insight into the intergenerational toxicity and underlying molecular mechanisms of responses to NPs under OA conditions.


Copepoda , Seawater , Animals , Copepoda/physiology , Microplastics , Ecosystem , Hydrogen-Ion Concentration , Ocean Acidification , Reproduction , Epigenesis, Genetic
6.
Mar Pollut Bull ; 181: 113933, 2022 Aug.
Article En | MEDLINE | ID: mdl-35850089

While pollution due to nano- and micro-sized plastics (NMPs) and hypoxic conditions both occur in coastal areas, the deleterious potential of co-exposure to hypoxia and NMPs (hypoxia and micro-sized plastics, HMPs; hypoxia and nano-sized plastics, HNPs) is largely unclear. Here, we provide evidence for multigenerational effects of HMP and HNP in the marine rotifer Brachionus plicatilis by investigating changes in its life traits, antioxidant system, and hypoxia-inducible factor (HIF) pathway using an orthogonal experimental design, with nanoscale and microscale particles measuring 0.05 µm and 6.0 µm in diameter, respectively, and hypoxic conditions of 0.5 mg/L for six generations. Combined exposure to NMPs and hypoxia caused a significant decrease in fecundity and overproduction of reactive oxygen species (ROS). The HIF pathway and circadian clock genes were also significantly upregulated in response to HMP and HNP exposure. In particular, synergistic deleterious effects of HNP were evident, suggesting that size-dependent toxicity can be a major driver of the effects of hypoxia and NMP co-exposure. After several generations of exposure, ROS levels returned to basal levels and transcriptomic resilience was observed, although rotifer reproduction remained suppressed. These findings help eluciating the underlying molecular mechanisms involved in responses to plastic pollution in hypoxic conditions.


Rotifera , Water Pollutants, Chemical , Animals , Hypoxia , Microplastics , Oxidative Stress , Plastics/metabolism , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/metabolism
7.
Article En | MEDLINE | ID: mdl-35760305

The freshwater water flea Daphnia magna is a planktonic animal belonging to the Cladocera. To evaluate differences between two D. magna strains (KIT and NIES) in terms of life parameters and fatty acid profiles, we examined several endpoints. In the D. magna KIT strain, the numbers of total and cumulative offspring were lower at 23 °C and higher at 14 °C than in the D. magna NIES strain. However, at 14 °C, the D. magna KIT strain showed an increased lifespan. Although the n-3/n-6 polyunsaturated fatty acids (PUFA) ratio was always decreased at a low temperature, the PUFA ratio in the KIT strain had a higher value on day 3 than the NIES strain, which gave it higher adaptability to low temperature. In addition, we identified the elongation of very long chain fatty acids (elovl) and fatty acid desaturase (fad) genes, which are involved in fatty acid biosynthesis pathways, in the genomes of both D. magna KIT and NIES. The Elovl and Fad genes in both D. magna strains were highly conserved, including tandem duplicated Elovl 1/7 genes. This study provides new information about the molecular basis for the difference in temperature sensitivity between two strains of D. magna.


Cladocera , Fatty Acids, Omega-3 , Water Pollutants, Chemical , Animals , Daphnia/genetics , Fatty Acids , Flavin-Adenine Dinucleotide , Fresh Water
8.
Article En | MEDLINE | ID: mdl-35245781

Monogonont rotifers are common species in aquatic environments and make model species for ecotoxicology studies. Whole genomes of several species of the genus Brachionus have been assembled, but no information on the freshwater rotifer Brachionus rubens has been reported. In this study, the whole-genome sequence of B. rubens was successfully assembled using NextDenovo. The total length of the genome was 132.7 Mb (N50 = 2.51 Mb), including 122 contigs. The GC contents accounted for 29.96% of the genome. Aquatic organisms are always exposed to various external stresses, and a comprehensive genomic analysis is needed to better understand the adverse effects on organisms. This paper focuses on the ecotoxicological aspect and conducted genome analysis of representative gene families involved in detoxification mechanisms against environmental stressors. Specifically, we identified cytochrome P450 genes (CYPs) of phase I, glutathione S-transferase genes (GSTs) of phase II, and ATP-binding cassette transporter genes (ABCs) of phase III in the genome of B. rubens. Gene duplications were found in CYP, GST, and ABC genes, as is the case for other Brachionus rotifers. Our results suggest that these detoxification-related gene families have evolved in a species-specific and/or lineage-specific manner. This paper improves our understanding of how the freshwater Brachionus rotifers respond to environmental stressors in a molecular ecotoxicology context.


Rotifera , Water Pollutants, Chemical , Animals , Cytochrome P-450 Enzyme System/genetics , Ecotoxicology , Fresh Water , Genome , Rotifera/genetics , Water Pollutants, Chemical/toxicity
9.
Materials (Basel) ; 15(6)2022 Mar 18.
Article En | MEDLINE | ID: mdl-35329702

Ferroelectric tunnel junctions (FTJs) have attracted attention as devices for advanced memory applications owing to their high operating speed, low operating energy, and excellent scalability. In particular, hafnia ferroelectric materials are very promising because of their high remanent polarization (below 10 nm) and high compatibility with complementary metal-oxide-semiconductor (CMOS) processes. In this study, a Si-doped HfO2-based FTJ device with a metal-ferroelectric-insulator-semiconductor (MFIS) structure was proposed to maximize the tunneling electro-resistance (TER) effect. The potential barrier modulation effect under applied varying voltage was analyzed, and the possibility of its application as a non-volatile memory device was presented through stability assessments such as endurance and retention tests.

10.
Mar Pollut Bull ; 175: 113396, 2022 Feb.
Article En | MEDLINE | ID: mdl-35149311

The increased use of disinfectants due to the spread of the novel coronavirus infection (e.g. COVID-19) has caused burden in the environment but knowledge on its ecotoxicological impact on the estuary environment is limited. Here we report in vivo and molecular endpoints that we used to assess the effects of chloroxylenol (PCMX) and benzalkonium chloride (BAC), which are ingredients in liquid handwash, dish soap products, and sanitizers used by consumers and healthcare workers on the estuarine rotifer Brachionus koreanus. PCMX and BAC significantly affected the life table parameters of B. koreanus. These chemicals modulated the activities of antioxidant enzymes such as superoxide dismutase and catalase and increased reactive oxygen species even at low concentrations. Also, PCMX and BAC caused alterations in the swimming speed and rotation rate of B. koreanus. Furthermore, an RNA-seq-based ingenuity pathway analysis showed that PCMX affected several signaling pathways, allowing us to predict that a low concentration of PCMX will have deleterious effects on B. koreanus. The neurotoxic and mitochondrial dysfunction event scenario induced by PCMX reflects the underlying molecular mechanisms by which PCMX produces outcomes deleterious to aquatic organisms.


COVID-19 , Disinfectants , Rotifera , Water Pollutants, Chemical , Animals , Disinfectants/toxicity , Humans , Reproduction , SARS-CoV-2 , Swimming , Water Pollutants, Chemical/metabolism
11.
Aquat Toxicol ; 242: 106021, 2022 Jan.
Article En | MEDLINE | ID: mdl-34856461

The water flea Daphnia magna is a small freshwater planktonic animal in the Cladocera. In this study, we assembled the genome of the D. magna NIES strain, which is widely used for gene targeting but has no reported genome. We used the long-read sequenced data of the Oxford nanopore sequencing tool for assembly. Using 3,231 genetic markers, the draft genome of the D. magna NIES strain was built into ten linkage groups (LGs) with 483 unanchored contigs, comprising a genome size of 173.47 Mb. The N50 value of the genome was 12.54 Mb and the benchmarking universal single-copy ortholog value was 98.8%. Repeat elements in the D. magna NIES genome were 40.8%, which was larger than other Daphnia spp. In the D. magna NIES genome, 15,684 genes were functionally annotated. To assess the genome of the D. magna NIES strain for CRISPR/Cas9 gene targeting, we selected glutathione S-transferase omega 2 (GST-O2), which is an important gene for the biotransformation of arsenic in aquatic organisms, and targeted it with an efficient make-up (25.0%) of mutant lines. In addition, we measured reactive oxygen species and antioxidant enzymatic activity between wild type and a mutant of the GST-O2 targeted D. magna NIES strain in response to arsenic. In this study, we present the genome of the D. magna NIES strain using GST-O2 as an example of gene targeting, which will contribute to the construction of deletion mutants by CRISPR/Cas9 technology.


CRISPR-Cas Systems , Daphnia , Gene Targeting , Animals , Daphnia/genetics , Glutathione Transferase/genetics
12.
J Hazard Mater ; 420: 126652, 2021 10 15.
Article En | MEDLINE | ID: mdl-34329117

Microplastics are ubiquitous environmental pollutants and a great threat to the aquatic environment. Due to their small size (ranging from 1 µm to 5 mm), microplastics be easily ingested by a wide range of organisms and can serve as a vector for various contaminants. In this study, additive or possible synergistic effects of microplastics and zinc were demonstrated through sex-specific alterations in behavior, redox status, and modulation of detoxification-related genes in Daphnia magna, with males being more sensitive than females with stronger modulations of antioxidant responses, particularly on glutathione S-transferases expressions. Furthermore, we demonstrated microplastics may act as vectors for metals (Zn2+) in the aquatic environment in D. magna, with reduced bio-concentration of the total Zn concentration, inducing greater toxicity. Our findings demonstrated synergistic toxicity of the heavy metal Zn and microplastics and could contribute to greater understanding of sex-specific effects of microplastics in aquatic organisms.


Cladocera , Microplastics/toxicity , Water Pollutants, Chemical , Animals , Daphnia , Female , Male , Sex Factors , Water Pollutants, Chemical/toxicity , Zinc/toxicity
13.
Aquat Toxicol ; 233: 105772, 2021 Apr.
Article En | MEDLINE | ID: mdl-33618324

Besides the adverse biological effects induced by microplastics (MPs), the effects associated with sorption of ambient pollutants on MPs are considered as an emerging environmental problem as MPs act as a mediator of pollutants. The present study examines the combined effects of nano(micro)plastics (NMPs) and arsenic (As) by exposing the marine rotifer Brachionus plicatilis to MP particles at the micro-scale (6 µm) and nano-scale (nanoplastics, NPs) (50 nm) along with As. In vivo toxicity, bioaccumulation, and biochemical reactions were used to examine the effects of combined exposure. The results of in vivo experiments showed that As toxicity increased with NP exposure, whereas toxicity was alleviated by MPs, indicating a different mode of action between NPs and MPs in combination with As. The highest level of As bioaccumulation was detected in NP + As groups, and followed by MP + As and As-only exposure groups, whereas no significant difference between groups was shown for As metabolites. In addition, the activity of several ATP-binding cassette proteins that confer multixenobiotic resistance, which is responsible for efflux of As, was activated by As but significantly inhibited by NP exposure, supporting the findings of in vivo experiments. Our results show that the effects of combining exposure to As with NP and MPs differ depending on particle size and provide an in-depth understanding of both environmental pollutants.


Arsenic/toxicity , Microplastics/toxicity , Nanoparticles/toxicity , Rotifera/drug effects , Water Pollutants, Chemical/toxicity , ATP-Binding Cassette Transporters/metabolism , Animals , Arsenic/metabolism , Bioaccumulation , Biological Availability , Microplastics/metabolism , Models, Theoretical , Nanoparticles/metabolism , Rotifera/metabolism , Swimming , Water Pollutants, Chemical/metabolism
14.
J Hazard Mater ; 402: 123739, 2021 01 15.
Article En | MEDLINE | ID: mdl-33254767

To determine the effects of tributyltin (TBT) upon multiple exposures of diet and microplastic in rotifer, in vivo life parameters were measured. In 10 µg/L TBT-exposed rotifer, the 1 and 0.5 x diet groups resulted in reproduction reduction. However, 10 x diet treatment showed no significant changes in the total fecundity, despite a decrease in daily reproduction. Besides, differences in the lifespan were observed in response to different diet regimens. TBT and/or MP-exposed parental rotifer (F0) showed a significant delay in the pre-reproductive day under 0.5 x diet regimen. In all dietary regimens, exposure to TBT and MP induced an increase in reactive oxygen species, but antioxidant activities were perturbed. To further verify the carryover effect of TBT toxicity, progeny rotifer (F1) obtained from 24 h TBT and/or MP-exposed F0 was used. Interestingly, the faster hatching rate was observed only in F1 obtained from 1 x diet regimen-exposed F0. However, in the 0.5 x diet, the total fecundity was reduced and the pattern of the daily reproduction was collapsed. Thus, the toxicity of TBT can be alleviated by MP and nutrition status, but TBT-induced toxicity and its carryover effect are inevitable.


Rotifera , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Diet , Microplastics , Plastics , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/toxicity
15.
Article En | MEDLINE | ID: mdl-33065474

Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.


Gene Expression Regulation , Genome , Heat-Shock Proteins/genetics , Helminth Proteins/genetics , Multigene Family , Rotifera/genetics , Transcriptome , Animals , Ecotoxicology , Heat-Shock Response , Salinity
16.
Article En | MEDLINE | ID: mdl-32898657

Low-temperature exposure prolongs lifespans and changes lipid metabolism but the relationship between longevity and lipids is largely unknown. Here, we examine the relationship between longevity and lipid metabolism at low temperatures (20 °C and 15 °C) compared with a 25 °C control. Life parameters, fatty acid composition, and transcriptome changes were analyzed in the monogonont rotifer Brachionus koreanus. In vivo life-parameter data indicate that lifespan and fecundity exhibit opposite correlations at low temperatures. The amount of total fatty acids decreased significantly at low temperatures but areas stained with Nile red increased at 15 °C compared with the control. From RNA-seq-based transcriptional analysis, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment analysis were conducted. GO analysis shows that telomeres were positively regulated at low temperatures. KEGG pathway-enrichment results indicate that gene expression involved in lipid metabolism was activated with increased glycerol and/or choline synthesis at low temperatures. We suggest that reduced reproductive rates are associated with a decrease of lecithin, which is involved in the conversion of glycerol to triacylglycerol in response to low temperatures by lowering the temperature of body fluid.


Cold Temperature , Lipid Metabolism , Rotifera/metabolism , Animals , Choline/biosynthesis , Fatty Acids/metabolism , Glycerol/metabolism , Longevity , Rotifera/genetics , Telomere , Transcriptome
...