Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 214
1.
Clin Nucl Med ; 49(5): 387-396, 2024 May 01.
Article En | MEDLINE | ID: mdl-38465965

BACKGROUND: Progressive supranuclear palsy (PSP) is a tauopathy that involves subcortical regions but also extends to cortical areas. The clinical impact of different tau protein sites and their influence on glymphatic dysfunction have not been investigated. PATIENTS AND METHODS: Participants (n = 55; 65.6 ± 7.1 years; 29 women) with PSP (n = 32) and age-matched normal controls (NCs; n = 23) underwent 18 F-Florzolotau tau PET, MRI, PSP Rating Scale (PSPRS), and Mini-Mental State Examination. Cerebellar gray matter (GM) and parametric estimation of reference signal intensity were used as references for tau burden measured by SUV ratios. Glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS: Parametric estimation of reference signal intensity is a better reference than cerebellar GM to distinguish tau burden between PSP and NCs. PSP patients showed higher cortical and subcortical tau SUV ratios than NCs ( P < 0.001 and <0.001). Cortical and subcortical tau deposition correlated with PSPRS, UPDRS, and Mini-Mental State Examination scores (all P 's < 0.05). Cortical tau deposition was further associated with the DTI-ALPS index and frontal-temporal-parietal GM atrophy. The DTI-ALPS indexes showed a significantly negative correlation with the PSPRS total scores ( P < 0.01). Finally, parietal and occipital lobe tau depositions showed mediating effects between the DTI-ALPS index and PSPRS score. CONCLUSIONS: Cortical tau deposition is associated with glymphatic dysfunction and plays a role in mediating glymphatic dysfunction and clinical severity. Our results provide a possible explanation for the worsening of clinical severity in patients with PSP.


Supranuclear Palsy, Progressive , tau Proteins , Humans , Female , tau Proteins/metabolism , Supranuclear Palsy, Progressive/metabolism , Magnetic Resonance Imaging , Image Processing, Computer-Assisted
2.
Brain Struct Funct ; 229(1): 207-221, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070006

The Inferior Frontal Occipital Fasciculus (IFOF) is a major anterior-to-posterior white matter pathway in the ventral human brain that connects parietal, temporal and occipital regions to frontal cortex. It has been implicated in a range of functions, including language, semantics, inhibition and the control of action. The recent research shows that the IFOF can be sub-divided into a ventral and dorsal branch, but the functional relevance of this distinction, as well as any potential hemispheric differences, are poorly understood. Using DTI tractography, we investigated the involvement of dorsal and ventral subdivisions of the IFOF in the left and right hemisphere in a response inhibition task (Go/No-Go), where the decision to respond or to withhold a prepotent response was made on the basis of semantic or non-semantic aspects of visual inputs. The task also varied the presentation modality (whether concepts were presented as written words or images). The results showed that the integrity of both dorsal and ventral IFOF in the left hemisphere were associated with participants' inhibition performance when the signal to stop was meaningful and presented in the verbal modality. This effect was absent in the right hemisphere. The integrity of dorsal IFOF was also associated with participants' inhibition efficiency in difficult perceptually guided decisions. This pattern of results indicates that left dorsal IFOF is implicated in the domain-general control of visually-guided behaviour, while the left ventral branch might interface with the semantic system to support the control of action when the inhibitory signal is based on meaning.


Behavior Control , Semantics , Humans , Occipital Lobe/physiology , Frontal Lobe/physiology , Language , Neural Pathways/physiology
3.
Pediatr Radiol ; 53(12): 2539-2551, 2023 11.
Article En | MEDLINE | ID: mdl-37682330

OBJECTIVE: To investigate the feasibility of diffusion-weighted magnetic resonance imaging (DW-MRI) as a predictive imaging marker after neoadjuvant chemotherapy in patients with rhabdomyosarcoma. MATERIAL AND METHODS: We performed a multicenter retrospective study including pediatric, adolescent and young adult patients with rhabdomyosarcoma, Intergroup Rhabdomyosarcoma Study group III/IV, treated according to the European paediatric Soft tissue sarcoma Study Group (EpSSG) RMS2005 or MTS2008 studies. DW-MRI was performed according to institutional protocols. We performed two-dimensional single-slice tumor delineation. Areas of necrosis or hemorrhage were delineated to be excluded in the primary analysis. Mean, median and 5th and 95th apparent diffusion coefficient (ADC) were extracted. RESULTS: Of 134 included patients, 82 had measurable tumor at diagnosis and response and DW-MRI scans of adequate quality and were included in the analysis. Technical heterogeneity in scan acquisition protocols and scanners was observed. Mean ADC at diagnosis was 1.1 (95% confidence interval [CI]: 1.1-1.2) (all ADC expressed in * 10-3 mm2/s), versus 1.6 (1.5-1.6) at response assessment. The 5th percentile ADC was 0.8 (0.7-0.9) at diagnosis and 1.1 (1.0-1.2) at response. Absolute change in mean ADC after neoadjuvant chemotherapy was 0.4 (0.3-0.5). Exploratory analyses for association between ADC and clinical parameters showed a significant difference in mean ADC at diagnosis for alveolar versus embryonal histology. Landmark analysis at nine weeks after the date of diagnosis showed no significant association (hazard ratio 1.3 [0.6-3.2]) between the mean ADC change and event-free survival. CONCLUSION: A significant change in the 5th percentile and the mean ADC after chemotherapy was observed. Strong heterogeneity was identified in DW-MRI acquisition protocols between centers and in individual patients.


Rhabdomyosarcoma , Sarcoma , Adolescent , Young Adult , Humans , Child , Diffusion Magnetic Resonance Imaging/methods , Retrospective Studies , Rhabdomyosarcoma/diagnostic imaging
5.
J Neurol Sci ; 445: 120516, 2023 02 15.
Article En | MEDLINE | ID: mdl-36702068

INTRODUCTION: Neurological soft signs (NSS) are minor deviations from the norm in motor performance that are commonly assessed using neurological examinations. NSS may be of clinical relevance for evaluating the developmental status of adolescents. Here we investigate whether quantitative force plate measures may add relevant information to observer-based neurological examinations. METHODS: Male adolescent athletes (n = 141) aged 13-16 years from three European sites underwent a neurological examination including 28 tests grouped into six functional clusters. The performance of tests and functional clusters was rated as optimal/non-optimal resulting in NSS+/NSS- groups and a continuous total NSS score. Participants performed a postural control task on a Balance Tracking System measured as path length, root mean square and sway area. ANCOVAs were applied to test for group differences in postural control between the NSS+ and NSS- group, and between optimal/non-optimal performance on a cluster- and test-level. Moreover, we tested for correlations between the total NSS score and postural control variables. RESULTS: There was no significant overall difference between the NSS+ and NSS- group in postural control. However, non-optimal performing participants in the diadochokinesis test swayed significantly more in the medial-lateral direction than optimal performing participants. Moreover, a lower total NSS score was associated with reduced postural control in the medial-lateral direction. CONCLUSION: Our findings demonstrate that NSS are related to postural control in adolescent athletes. Thus, force plate measures may add a quantitative, objective measurement of postural control to observer-based qualitative assessments, and thus, may complement clinical testing.


Athletes , Postural Balance , Humans , Male , Adolescent , Neurologic Examination
6.
Insights Imaging ; 14(1): 19, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36720720

PURPOSE: Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhabdomyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric rhabdomyosarcoma. MATERIALS AND METHODS: A literature review was performed in PubMed using search terms relating to MRI and sarcomas to identify commonly applied segmentation strategies. Seventy-six articles were included, and their presented segmentation methods were evaluated. Commonly reported segmentation strategies were then evaluated on diffusion-weighted imaging of five pediatric rhabdomyosarcoma patients to assess their impact on ADC. RESULTS: We found that studies applied different segmentation strategies to define the shape of the region of interest (ROI)(outline 60%, circular ROI 27%), to define the segmentation volume (2D 44%, multislice 9%, 3D 21%), and to define the segmentation area (excludes edge 7%, excludes other region 19%, specific area 27%, whole tumor 48%). In addition, details of the segmentation strategy are often unreported. When implementing and comparing these strategies on in-house data, we found that excluding necrotic, cystic, and hemorrhagic areas from segmentations resulted in on average 5.6% lower mean ADC. Additionally, the slice location used in 2D segmentation methods could affect ADC by as much as 66%. CONCLUSION: Diffusion-weighted MRI studies in pediatric sarcoma currently employ a variety of segmentation methods. Our study shows that different segmentation strategies can result in vastly different ADC measurements, highlighting the importance to further investigate and standardize segmentation.

7.
Cereb Cortex ; 33(9): 5547-5556, 2023 04 25.
Article En | MEDLINE | ID: mdl-36424865

Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents. Male adolescent athletes (n = 136, 13-16 years) underwent a standardized neurological examination including 28 tests grouped into 6 functional clusters. Non-optimal performance in at least 1 cluster was rated as NSS (NSS+ group). Participants underwent T1- and diffusion-weighted magnetic resonance imaging. Cortical volume, thickness, and local gyrification were calculated using Freesurfer. Measures of white matter microstructure (Free-water (FW), FW-corrected fractional anisotropy (FAt), axial and radial diffusivity (ADt, RDt)) were calculated using tract-based spatial statistics. General linear models with age and handedness as covariates were applied to assess differences between NSS+ and NSS- group. We found higher gyrification in a large cluster spanning the left superior frontal and parietal areas, and widespread lower FAt and higher RDt compared with the NSS- group. This study shows that NSS in adolescents are associated with brain structure alterations. Underlying mechanisms may include alterations in synaptic pruning and axon myelination, which are hallmark processes of brain maturation.


Magnetic Resonance Imaging , White Matter , Humans , Male , Adolescent , Magnetic Resonance Imaging/methods , Brain , White Matter/pathology , Diffusion Magnetic Resonance Imaging , Neurologic Examination
8.
NMR Biomed ; 36(3): e4856, 2023 03.
Article En | MEDLINE | ID: mdl-36285630

Diffusion kurtosis imaging (DKI) is applied to gain insights into the microstructural organization of brain tissues. However, the reproducibility of DKI outside brain white matter, particularly in combination with advanced estimation to remedy its noise sensitivity, remains poorly characterized. Therefore, in this study, we investigated the variability and reliability of DKI metrics while correcting implausible values with a fit method called mean kurtosis (MK)-Curve. A total of 10 volunteers (four women; age: 41.4 ± 9.6 years) were included and underwent two MRI examinations of the brain. The images were acquired on a clinical 3-T scanner and included a T1-weighted image and a diffusion sequence with multiple diffusion weightings suitable for DKI. Region of interest analysis of common kurtosis and tensor metrics derived with the MK-Curve DKI fit was performed, including intraclass correlation (ICC) and Bland-Altman (BA) plot statistics. A p value of less than 0.05 was considered statistically significant. The analyses showed good to excellent agreement of both kurtosis tensor- and diffusion tensor-derived MK-Curve-corrected metrics (ICC values: 0.77-0.98 and 0.87-0.98, respectively), with the exception of two DKI-derived metrics (axial kurtosis in the cortex: ICC = 0.68, and radial kurtosis in deep gray matter: ICC = 0.544). Non-MK-Curve-corrected kurtosis tensor-derived metrics ranged from 0.01 to 0.52 and diffusion tensor-derived metrics from 0.06 to 0.66, indicating poor to moderate reliability. No structural bias was observed in the BA plots for any of the diffusion metrics. In conclusion, MK-Curve-corrected DKI metrics of the human brain can be reliably acquired in white and gray matter at 3 T and DKI metrics have good to excellent agreement in a test-retest setting.


Diffusion Tensor Imaging , White Matter , Humans , Female , Adult , Middle Aged , Reproducibility of Results , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging
9.
MAGMA ; 36(1): 79-93, 2023 Feb.
Article En | MEDLINE | ID: mdl-35904612

OBJECTIVES: Diffusion-weighted MRI can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways, such as the corticospinal tract (CST). However, accurate reconstruction of the full extent of the CST remains challenging with existing tractography methods. We suggest a novel tractography algorithm exploiting unused fiber orientations to produce more complete and reliable results. METHODS: Our novel approach, referred to as multi-level fiber tractography (MLFT), reconstructs fiber pathways by progressively considering previously unused fiber orientations at multiple levels of tract propagation. Anatomical priors are used to minimize the number of false-positive pathways. The MLFT method was evaluated on synthetic data and in vivo data by reconstructing the CST while compared to conventional tractography approaches. RESULTS: The radial extent of MLFT reconstructions is comparable to that of probabilistic reconstruction: [Formula: see text] for the left and [Formula: see text] for the right hemisphere according to Wilcoxon test, while achieving significantly higher topography preservation compared to probabilistic tractography: [Formula: see text]. DISCUSSION: MLFT provides a novel way to reconstruct fiber pathways by adding the capability of including branching pathways in fiber tractography. Thanks to its robustness, feasible reconstruction extent and topography preservation, our approach may assist in clinical practice as well as in virtual dissection studies.


Diffusion Tensor Imaging , Image Processing, Computer-Assisted , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Algorithms , Pyramidal Tracts/diagnostic imaging
10.
Front Neurol ; 13: 1005406, 2022.
Article En | MEDLINE | ID: mdl-36530616

Aim: This study aims to assess the integrity of white matter in various segments of the corpus callosum in Alzheimer's disease (AD) by using metrics derived from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and white matter tract integrity model (WMTI) and compare these findings to healthy controls (HC). Methods: The study was approved by the institutional ethics board. 12 AD patients and 12 HC formed the study population. All AD patients were recruited from a tertiary neurology memory clinic. A standardized battery of neuropsychological assessments was administered to the study participants by a trained rater. MRI scans were performed with a Philips Ingenia 3.0T scanner equipped with a 32-channel head coil. The protocol included a T1-weighted sequence, FLAIR and a dMRI acquisition. The dMRI scan included a total of 71 volumes, 8 at b = 0 s/mm2, 15 at b = 1,000 s/mm2 and 48 at b = 2,000 s/mm2. Diffusion data fit was performed using DKI REKINDLE and WMTI models. Results and discussion: We detected changes suggesting demyelination and axonal degeneration throughout the corpus callosum of patients with AD, most prominent in the mid-anterior and mid-posterior segments of CC. Axial kurtosis was the most significantly altered metric, being reduced in AD patients in almost all segments of corpus callosum. Reduced axial kurtosis in the CC segments correlated with poor cognition scores in AD patients in the visuospatial, language and attention domains.

11.
Neuroimage Clin ; 36: 103217, 2022.
Article En | MEDLINE | ID: mdl-36240537

PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more severely affected patients with a pure form of genetically defined SVD as reference. RESULTS: In controls, thresholding and harmonization improved consistency of network architecture, minimizing cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved precision to detect disrupted connections by removing false positive connections (precision, before: 0.09-0.19; after: 0.38-0.70). Before harmonization, sensitivity was low within individual sites, with few connections surviving multiple testing correction (k = 0-25 connections). Harmonization and pooling improved sensitivity (k = 38), while also achieving higher precision when combined with thresholding (0.97). CONCLUSION: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large existing multicentre datasets to better understand the impact of disease on brain networks.


Cerebral Small Vessel Diseases , White Matter , Humans , Diffusion Tensor Imaging , Neural Pathways , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging
12.
Brain Struct Funct ; 227(8): 2769-2785, 2022 Nov.
Article En | MEDLINE | ID: mdl-36151482

Previous research using functional MRI identified brain regions associated with sensory processing sensitivity (SPS), a proposed normal phenotype trait. To further validate SPS, to characterize it anatomically, and to test the usefulness in psychology of methodologies that assess axonal properties, the present study correlated SPS proxy questionnaire scores (adjusted for neuroticism) with diffusion tensor imaging (DTI) measures. Participants (n = 408) from the Human Connectome Project were studied. Voxelwise analysis showed that mean- and radial diffusivity correlated positively with SPS scores in the right and left subcallosal and anterior-ventral cingulum bundle, and the right forceps minor of the corpus callosum, all frontal cortex areas generally underlying emotion, motivation, and cognition. Further analyses showed correlations throughout medial frontal cortical regions in the right and left ventromedial prefrontal cortex, including the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate, and arcuate fasciculus. Fractional anisotropy was negatively correlated with SPS scores in white matter (WM) of the right premotor/motor/somatosensory/supramarginal gyrus regions. Region of interest (ROI) analysis showed small effect sizes (- 0.165 to 0.148) in WM of the precuneus and inferior frontal gyrus. Other ROI effects were found in the dorsal-, ventral visual pathways and primary auditory cortex. The results reveal that in a large group of participants, axonal microarchitectural differences can be identified with SPS traits that are subtle and in the range of typical behavior. The results suggest that the heightened sensory processing in people who show that SPS may be influenced by the microstructure of WM in specific cortical regions. Although previous fMRI studies had identified most of these areas, the DTI results put a new focus on brain areas related to attention and cognitive flexibility, empathy, emotion, and first levels of sensory processing, as in primary auditory cortex. Psychological trait characterization may benefit from DTI methodology by identifying influential brain systems for traits.


Diffusion Tensor Imaging , White Matter , Humans , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging , Anisotropy , Perception
13.
Neuroimage ; 259: 119439, 2022 10 01.
Article En | MEDLINE | ID: mdl-35788044

Quantification methods based on the acquisition of diffusion magnetic resonance imaging (dMRI) with multiple diffusion weightings (e.g., multi-shell) are becoming increasingly applied to study the in-vivo brain. Compared to single-shell data for diffusion tensor imaging (DTI), multi-shell data allows to apply more complex models such as diffusion kurtosis imaging (DKI), which attempts to capture both diffusion hindrance and restriction effects, or biophysical models such as NODDI, which attempt to increase specificity by separating biophysical components. Because of the strong dependence of the dMRI signal on the measurement hardware, DKI and NODDI metrics show scanner and site differences, much like other dMRI metrics. These effects limit the implementation of multi-shell approaches in multicenter studies, which are needed to collect large sample sizes for robust analyses. Recently, a post-processing technique based on rotation invariant spherical harmonics (RISH) features was introduced to mitigate cross-scanner differences in DTI metrics. Unlike statistical harmonization methods, which require repeated application to every dMRI metric of choice, RISH harmonization is applied once on the raw data, and can be followed by any analysis. RISH features harmonization has been tested on DTI features but not its generalizability to harmonize multi-shell dMRI. In this work, we investigated whether performing the RISH features harmonization of multi-shell dMRI data removes cross-site differences in DKI and NODDI metrics while retaining longitudinal effects. To this end, 46 subjects underwent a longitudinal (up to 3 time points) two-shell dMRI protocol at 3 imaging sites. DKI and NODDI metrics were derived before and after harmonization and compared both at the whole brain level and at the voxel level. Then, the harmonization effects on cross-sectional and on longitudinal group differences were evaluated. RISH features averaged for each of the 3 sites exhibited prominent between-site differences in the frontal and posterior part of the brain. Statistically significant differences in fractional anisotropy, mean diffusivity and mean kurtosis were observed both at the whole brain and voxel level between all the acquisition sites before harmonization, but not after. The RISH method also proved effective to harmonize NODDI metrics, particularly in white matter. The RISH based harmonization maintained the magnitude and variance of longitudinal changes as compared to the non-harmonized data of all considered metrics. In conclusion, the application of RISH feature based harmonization to multi-shell dMRI data can be used to remove cross-site differences in DKI metrics and NODDI analyses, while retaining inherent relations between longitudinal acquisitions.


Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , White Matter/diagnostic imaging
14.
Neuroimage ; 257: 119327, 2022 08 15.
Article En | MEDLINE | ID: mdl-35636227

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Connectome , White Matter , Brain/diagnostic imaging , Connectome/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods
16.
Brain Behav ; 12(5): e2523, 2022 05.
Article En | MEDLINE | ID: mdl-35413156

INTRODUCTION: Thresholding of low-weight connections of diffusion MRI-based brain networks has been proposed to remove false-positive connections. It has been previously established that this yields more reproducible scan-rescan network architecture in healthy subjects. In patients with brain disease, network measures are applied to assess inter-individual variation and changes over time. Our aim was to investigate whether thresholding also achieves improved consistency in network architecture in patients, while maintaining sensitivity to disease effects for these applications. METHODS: We applied fixed-density and absolute thresholding on brain networks in patients with cerebral small vessel disease (SVD, n = 86; ≈24 months follow-up), as a clinically relevant exemplar condition. In parallel, we applied the same methods in healthy young subjects (n = 44; scan-rescan interval ≈4 months) as a frame of reference. Consistency of network architecture was assessed with dice similarity of edges and intraclass correlation coefficient (ICC) of edge-weights and hub-scores. Sensitivity to disease effects in patients was assessed by evaluating interindividual variation, changes over time, and differences between those with high and low white matter hyperintensity burden, using correlation analyses and mixed ANOVA. RESULTS: Compared to unthresholded networks, both thresholding methods generated more consistent architecture over time in patients (unthresholded: dice = .70; ICC: .70-.78; thresholded: dice = .77; ICC: .73-.83). However, absolute thresholding created fragmented nodes. Similar observations were made in the reference group. Regarding sensitivity to disease effects in patients, fixed-density thresholds that were optimal in terms of consistency (densities: .10-.30) preserved interindividual variation in global efficiency and node strength as well as the sensitivity to detect effects of time and group. Absolute thresholding produced larger fluctuations of interindividual variation. CONCLUSIONS: Our results indicate that thresholding of low-weight connections, particularly when using fixed-density thresholding, results in more consistent network architecture in patients with longer rescan intervals, while preserving sensitivity to disease effects.


Cerebral Small Vessel Diseases , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging
17.
J Neuroimaging ; 32(3): 480-492, 2022 05.
Article En | MEDLINE | ID: mdl-35253956

BACKGROUND AND PURPOSE: To apply and evaluate an intensity-based interpolation technique, enabling segmentation of motion-affected neonatal brain MRI. METHODS: Moderate-late preterm infants were enrolled in a prospective cohort study (Brain Imaging in Moderate-late Preterm infants "BIMP-study") between August 2017 and November 2019. T2-weighted MRI was performed around term equivalent age on a 3T MRI. Scans without motion (n = 27 [24%], control group) and with moderate-severe motion (n = 33 [29%]) were included. Motion-affected slices were re-estimated using intensity-based shape-preserving cubic spline interpolation, and automatically segmented in eight structures. Quality of interpolation and segmentation was visually assessed for errors after interpolation. Reliability was tested using interpolated control group scans (18/54 axial slices). Structural similarity index (SSIM) was used to compare T2-weighted scans, and Sørensen-Dice was used to compare segmentation before and after interpolation. Finally, volumes of brain structures of the control group were used assessing sensitivity (absolute mean fraction difference) and bias (confidence interval of mean difference). RESULTS: Visually, segmentation of 25 scans (22%) with motion artifacts improved with interpolation, while segmentation of eight scans (7%) with adjacent motion-affected slices did not improve. Average SSIM was .895 and Sørensen-Dice coefficients ranged between .87 and .97. Absolute mean fraction difference was ≤0.17 for less than or equal to five interpolated slices. Confidence intervals revealed a small bias for cortical gray matter (0.14-3.07 cm3 ), cerebrospinal fluid (0.39-1.65 cm3 ), deep gray matter (0.74-1.01 cm3 ), and brainstem volumes (0.07-0.28 cm3 ) and a negative bias in white matter volumes (-4.47 to -1.65 cm3 ). CONCLUSION: According to qualitative and quantitative assessment, intensity-based interpolation reduced the percentage of discarded scans from 29% to 7%.


Infant, Premature , Magnetic Resonance Imaging , Brain/diagnostic imaging , Child, Preschool , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging/methods , Neuroimaging , Prospective Studies , Reproducibility of Results
18.
Neuroimage Clin ; 34: 102983, 2022.
Article En | MEDLINE | ID: mdl-35287090

It is important to identify accurate markers of psychiatric illness to aid early prediction of disease course. Subclinical psychotic experiences (PEs) are important risk factors for later mental ill-health and suicidal behaviour. This study used machine learning to investigate neuroanatomical markers of PEs in early and later stages of adolescence. Machine learning using logistic regression using Elastic Net regularization was applied to T1-weighted and diffusion MRI data to classify adolescents with subclinical psychotic experiences vs. controls across 3 timepoints (Time 1:11-13 years, n = 77; Time 2:14-16 years, n = 56; Time 3:18-20 years, n = 40). Neuroimaging data classified adolescents aged 11-13 years with current PEs vs. controls returning an AROC of 0.62, significantly better than a null model, p = 1.73e-29. Neuroimaging data also classified those with PEs at 18-20 years (AROC = 0.59;P = 7.19e-10) but performance was at chance level at 14-16 years (AROC = 0.50). Left hemisphere frontal regions were top discriminant classifiers for 11-13 years-old adolescents with PEs, particularly pars opercularis. Those with future PEs at 18-20 years-old were best distinguished from controls based on left frontal regions, right-hemisphere medial lemniscus, cingulum bundle, precuneus and genu of the corpus callosum (CC). Deviations from normal adolescent brain development in young people with PEs included an acceleration in the typical pattern of reduction in left frontal thickness and right parietal curvature, and accelerated progression of microstructural changes in right white matter and corpus callosum. These results emphasise the importance of multi-modal analysis for understanding adolescent PEs and provide important new insights into early phenotypes for psychotic experiences.


Mental Disorders , Psychotic Disorders , White Matter , Adolescent , Biomarkers , Brain/diagnostic imaging , Humans , Machine Learning , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/psychology
19.
Brain Imaging Behav ; 16(1): 492-502, 2022 Feb.
Article En | MEDLINE | ID: mdl-34505977

Repetitive head impacts (RHI) are common in youth athletes participating in contact sports. RHI differ from concussions; they are considered hits to the head that usually do not result in acute symptoms and are therefore also referred to as "subconcussive" head impacts. RHI occur e.g., when heading the ball or during contact with another player. Evidence suggests that exposure to RHI may have cumulative effects on brain structure and function. However, little is known about brain alterations associated with RHI, or about the risk factors that may lead to clinical or behavioral sequelae. REPIMPACT is a prospective longitudinal study of competitive youth soccer players and non-contact sport controls aged 14 to 16 years. The study aims to characterize consequences of exposure to RHI with regard to behavior (i.e., cognition, and motor function), clinical sequelae (i.e., psychiatric and neurological symptoms), brain structure, function, diffusion and biochemistry, as well as blood- and saliva-derived measures of molecular processes associated with exposure to RHI (e.g., circulating microRNAs, neuroproteins and cytokines). Here we present the structure of the REPIMPACT Consortium which consists of six teams of clinicians and scientists in six countries. We further provide detailed information on the specific aims and the design of the REPIMPACT study. The manuscript also describes the progress made in the study thus far. Finally, we discuss important challenges and approaches taken to overcome these challenges.


Athletic Injuries , Brain Concussion , Soccer , Adolescent , Athletic Injuries/epidemiology , Brain Concussion/epidemiology , Brain Concussion/etiology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Prospective Studies
20.
J Int Neuropsychol Soc ; 28(9): 926-936, 2022 10.
Article En | MEDLINE | ID: mdl-34674790

OBJECTIVE: Evidence from adult literature shows the involvement of cortical grey matter areas of the frontoparietal lobe and the white matter bundle, the superior longitudinal fasciculus (SLF) in motor planning. This is yet to be confirmed in children. METHOD: A multimodal study was designed to probe the neurostructural basis of childhood motor planning. Behavioural (motor planning), magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data were acquired from 19 boys aged 8-11 years. Motor planning was assessed using the one and two colour sequences of the octagon task. The MRI data were preprocessed and analysed using FreeSurfer 6.0. Cortical thickness and cortical surface area were extracted from the caudal middle frontal gyrus (MFG), superior frontal gyrus (SFG), precentral gyrus (PcG), supramarginal gyrus (SMG), superior parietal lobe (SPL) and the inferior parietal lobe (IPL) using the Desikan-Killiany atlas. The DWI data were preprocessed and analysed using ExploreDTI 4.8.6 and the white matter tract, the SLF was reconstructed. RESULTS: Motor planning of the two colour sequence was associated with cortical thickness of the bilateral MFG and left SFG, PcG, IPL and SPL. The right SLF was related to motor planning for the two colour sequence as well as with the left cortical thickness of the SFG. CONCLUSION: Altogether, morphology within frontodorsal circuity, and the white matter bundles that support communication between them, may be associated with individual differences in childhood motor planning.


White Matter , Adult , Cerebral Cortex , Child , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , White Matter/diagnostic imaging , White Matter/pathology
...