Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(30): e202400660, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38527187

RESUMEN

C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.


Asunto(s)
Lectinas Tipo C , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Ligandos , Sitios de Unión , Calcio/metabolismo , Calcio/química , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Unión Proteica , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/metabolismo , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/química , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo
2.
ACS Chem Biol ; 17(10): 2728-2733, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36153965

RESUMEN

Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles.


Asunto(s)
Lectinas Tipo C , Lectinas de Unión a Manosa , Humanos , Ratones , Animales , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Sitio Alostérico , Ligandos , Antígenos CD/metabolismo , Sitios de Unión , Solventes , Mamíferos/metabolismo
3.
ACS Med Chem Lett ; 13(6): 935-942, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35707152

RESUMEN

DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a pattern recognition receptor expressed on immune cells and involved in the recognition of carbohydrate signatures present on various pathogens, including HIV, Ebola, and SARS-CoV-2. Therefore, developing inhibitors blocking the carbohydrate-binding site of DC-SIGN could generate a valuable tool to investigate the role of this receptor in several infectious diseases. Herein, we performed a fragment-based ligand design using 4-quinolone as a scaffold. We synthesized a library of 61 compounds, performed a screening against DC-SIGN using an STD reporter assay, and validated these data using protein-based 1H-15N HSQC NMR. Based on the structure-activity relationship data, we demonstrate that ethoxycarbonyl or dimethylaminocarbonyl in position 2 or 3 is favorable for the DC-SIGN binding activity, especially in combination with fluorine, ethoxycarbonyl, or dimethylaminocarbonyl in position 7 or 8. Furthermore, we demonstrate that these quinolones can allosterically modulate the carbohydrate binding site, which offers an alternative approach toward this challenging protein target.

4.
J Am Chem Soc ; 143(45): 18977-18988, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34748320

RESUMEN

Dendritic cells (DC) are antigen-presenting cells coordinating the interplay of the innate and the adaptive immune response. The endocytic C-type lectin receptors DC-SIGN and Langerin display expression profiles restricted to distinct DC subtypes and have emerged as prime targets for next-generation immunotherapies and anti-infectives. Using heteromultivalent liposomes copresenting mannosides bearing aromatic aglycones with natural glycan ligands, we serendipitously discovered striking cooperativity effects for DC-SIGN+ but not for Langerin+ cell lines. Mechanistic investigations combining NMR spectroscopy with molecular docking and molecular dynamics simulations led to the identification of a secondary binding pocket for the glycomimetics. This pocket, located remotely of DC-SIGN's carbohydrate bindings site, can be leveraged by heteromultivalent avidity enhancement. We further present preliminary evidence that the aglycone allosterically activates glycan recognition and thereby contributes to DC-SIGN-specific cell targeting. Our findings have important implications for both translational and basic glycoscience, showcasing heteromultivalent targeting of DCs to improve specificity and supporting potential allosteric regulation of DC-SIGN and CLRs in general.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Antígenos CD/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/química , Línea Celular Tumoral , Humanos , Lectinas Tipo C/química , Ligandos , Liposomas/química , Liposomas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Manósidos/química , Manósidos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Receptores de Superficie Celular/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...