Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002725, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052683

RESUMEN

Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology. In this study, we investigated the conditions governing the expression and production of "Samy", a prophage found in Streptomyces ambofaciens ATCC 23877. This siphoprophage is produced simultaneously with the activation of other mobile genetic elements. Remarkably, the presence and production of Samy increases bacterial dispersal under in vitro stress conditions. Altogether, this study unveiled a new property of a bacteriophage infection in the context of multicellular aggregate dynamics.


Asunto(s)
Profagos , Streptomyces , Streptomyces/virología , Streptomyces/fisiología , Streptomyces/genética , Profagos/genética , Profagos/fisiología , Activación Viral/genética
2.
J Virol ; 96(14): e0067622, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758669

RESUMEN

Integration of the reverse-transcribed genome is a critical step of the retroviral life cycle. Strand-transfer inhibitors (INSTIs) used for antiretroviral therapy inhibit integration but can lead to resistance mutations in the integrase gene, the enzyme involved in this reaction. A significant proportion of INSTI treatment failures, particularly those with second-generation INSTIs, show no mutation in the integrase gene. Here, we show that replication of a selected dolutegravir-resistant virus with mutations in the 3'-PPT (polypurine tract) was effective, although no integrated viral DNA was detected, due to the accumulation of unintegrated viral DNA present as 1-LTR circles. Our results show that mutation in the 3'-PPT leads to 1-LTR circles and not linear DNA as classically reported. In conclusion, our data provide a molecular basis to explain a new mechanism of resistance to INSTIs, without mutation of the integrase gene and highlights the importance of unintegrated viral DNA in HIV-1 replication. IMPORTANCE Our work highlights the role of HIV-1 unintegrated viral DNA in viral replication. A virus, resistant to strand-transfer inhibitors, has been selected in vitro. This virus highlights a mutation in the 3'PPT region and not in the integrase gene. This mutation modifies the reverse transcription step leading to the accumulation of 1-LTR circles and not the linear DNA. This accumulation of 1-LTR circles leads to viral replication without integration of the viral genome.


Asunto(s)
ADN Viral , VIH-1 , Mutación , Integración Viral , Replicación Viral , ADN Viral/genética , Infecciones por VIH/virología , VIH-1/genética , Humanos , Integración Viral/genética , Replicación Viral/genética
3.
Nat Commun ; 12(1): 5221, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471117

RESUMEN

Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution.


Asunto(s)
Antibacterianos/metabolismo , Cromosomas Bacterianos , Streptomyces/genética , Streptomyces/metabolismo , Estructuras Cromosómicas , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Familia de Multigenes , Transcriptoma
4.
J Biol Chem ; 294(20): 8286-8295, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30971426

RESUMEN

Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway. These DNAs contain all the genetic information required for viral replication, but their role in HIV-1's life cycle remains unknown. We previously showed that both linear and circular DNA fragments containing the 2-LTR palindrome junction can be efficiently cleaved in vitro by recombinant integrases, leading to the formation of linear 3'-processed-like DNA. In this report, using in vitro experiments with purified proteins and DNAs along with DNA endonuclease and in vivo integration assays, we show that this circularized genome can also be efficiently used as a substrate in HIV-1 integrase-mediated integration both in vitro and in eukaryotic cells. Notably, we demonstrate that the palindrome cleavage occurs via a two-step mechanism leading to a blunt-ended DNA product, followed by a classical 3'-processing reaction; this cleavage leads to integrase-dependent integration, highlighted by a 5-bp duplication of the host genome. Our results suggest that 2-LTRc may constitute a reserve supply of HIV-1 genomes for proviral integration.


Asunto(s)
ADN Circular/química , ADN Viral/química , Integrasa de VIH/química , Duplicado del Terminal Largo de VIH , VIH-1/química , Integración Viral , ADN Circular/genética , ADN Viral/genética , ADN Viral/metabolismo , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos
5.
PLoS One ; 13(6): e0199171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29944671

RESUMEN

JC virus (JCV), a ubiquitous human polyomavirus, can cause fatal progressive multifocal leukoencephalopathy (PML) in immune compromised patients. The viral genome is composed of two conserved coding regions separated by a highly variable non-coding control region (NCCR). We analyzed the NCCR sequence from 10 PML JCV strains and found new mutations. Remarkably, the NCCR f section was mutated in most cases. We therefore explored the importance of this section in JCV expression in renal (HEK293H) and glioblastoma (U-87MG) cell lines, by adapting the emerging technology of DNA minicircles. Using bidirectional fluorescent reporters, we revealed that impaired NCCR-driven late expression in glioblastoma cells was restored by a short deletion overlapping e and f sections. This study evidenced a relevant link between JCV NCCR polymorphism and cell-type dependent expression. The use of DNA minicircles opens new insights for monitoring the impact of NCCR variation.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus JC/genética , Leucoencefalopatía Multifocal Progresiva/virología , Infecciones por Polyomavirus/virología , Línea Celular Tumoral , Genoma Viral , Células HEK293 , Humanos , Mutación , Polimorfismo Genético , Regiones no Traducidas
6.
J Antimicrob Chemother ; 73(5): 1158-1166, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373677

RESUMEN

Background: Dolutegravir, an integrase strand-transfer inhibitor (STI), shows a high genetic barrier to resistance. Dolutegravir is reported to be effective against viruses resistant to raltegravir and elvitegravir. In this study, we report the case of a patient treated with dolutegravir monotherapy. Failure of dolutegravir treatment was observed concomitant with the appearance of N155H-K211R-E212T mutations in the integrase (IN) gene in addition to the polymorphic K156N mutation that was present at baseline in this patient. Methods: The impact of N155H-K156N-K211R-E212T mutations was studied in cell-free, culture-based assays and by molecular modelling. Results: Cell-free and culture-based assays confirm that selected mutations in the patient, in the context of the polymorphic mutation K156N present at the baseline, lead to high resistance to dolutegravir requiring that the analysis be done at timepoints longer than usual to properly reveal the results. Interestingly, the association of only N155H and K156N is sufficient for significant resistance to dolutegravir. Modelling studies showed that dolutegravir is less stable in IN/DNA complexes with respect to the WT sequence. Conclusions: Our results indicate that the stability of STI IN/DNA complexes is an important parameter that must be taken into account when evaluating dolutegravir resistance. This study confirms that a pathway including N155H can be selected in patients treated with dolutegravir with the help of the polymorphic K156N that acts as a secondary mutation that enhances the resistance to dolutegravir.


Asunto(s)
Farmacorresistencia Viral , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/genética , VIH-1/efectos de los fármacos , VIH-1/enzimología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Mutación Missense , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Integrasa de VIH/química , Inhibidores de Integrasa VIH/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Humanos , Simulación del Acoplamiento Molecular , Oxazinas , Piperazinas , Piridonas , Insuficiencia del Tratamiento
7.
mBio ; 8(4)2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790204

RESUMEN

In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression.IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro, the binding of H-NS to the LEE5 promoter results in local structural modifications of DNA distinct from those generated through Ler binding. Furthermore, ler expression is a key parameter modulating the variability of the proportions of bacterial subpopulations. Accordingly, modulating the production of Ler into a nonpathogenic E. coli strain reproduces the bimodal expression of LEE5 Finally, this study illustrates how two nucleoid-binding proteins can reshape the epigenetic regulation of bacterial virulence.


Asunto(s)
Cromatina/genética , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/genética , Fosfoproteínas/genética , Proteínas Bacterianas/genética , Cromatina/química , Epigénesis Genética , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Virulencia
8.
Sci Rep ; 6: 25678, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27167871

RESUMEN

Integration of HIV-1 linear DNA into host chromatin is required for high levels of viral expression, and constitutes a key therapeutic target. Unintegrated viral DNA (uDNA) can support only limited transcription but may contribute to viral propagation, persistence and/or treatment escape under specific situations. The molecular mechanisms involved in the differential expression of HIV uDNA vs integrated genome (iDNA) remain to be elucidated. Here, we demonstrate, for the first time, that the expression of HIV uDNA is mainly supported by 1-LTR circles, and regulated in the opposite way, relatively to iDNA, following NF-κB pathway modulation. Upon treatment activating the NF-κB pathway, NF-κB p65 and AP-1 (cFos/cJun) binding to HIV LTR iDNA correlates with increased iDNA expression, while uDNA expression decreases. On the contrary, inhibition of the NF-κB pathway promotes the expression of circular uDNA, and correlates with Bcl-3 and AP-1 binding to its LTR region. Finally, this study identifies NF-κB subunits and Bcl-3 as transcription factors binding the HIV promoter differently depending on viral genome topology, and opens new insights on the potential roles of episomal genomes during the HIV-1 latency and persistence.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral , VIH-1/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Transcripción Genética , Integración Viral/genética , Línea Celular , ADN Circular/genética , ADN Viral/genética , Duplicado del Terminal Largo de VIH/genética , Humanos , Ácidos Nucleicos/metabolismo , Unión Proteica , ARN Viral/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
9.
Nucleic Acids Res ; 43(13): 6579-86, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26044711

RESUMEN

VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Canales Iónicos/metabolismo , Agrobacterium tumefaciens , Cinética , Modelos Biológicos , Concentración Osmolar , Unión Proteica , Resonancia por Plasmón de Superficie
10.
Retrovirology ; 12: 24, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25808736

RESUMEN

BACKGROUND: Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells. However, they have long been considered as dead-end products that are not precursors to integration and further viral propagation. RESULTS: Here, we show that raltegravir action is reversible and that unintegrated viral DNA is integrated in the host cell genome after raltegravir removal leading to HIV-1 replication. Using quantitative PCR approach, we analyzed the consequences of reversing prolonged raltegravir-induced integration blocks. We observed, after RAL removal, a decrease of 2-LTR circles and a transient increase of linear DNA that is subsequently integrated in the host cell genome and fuel new cycles of viral replication. CONCLUSIONS: Our data highly suggest that 2-LTR circles can be used as a reserve supply of genomes for proviral integration highlighting their potential role in the overall HIV-1 replication cycle.


Asunto(s)
ADN Viral/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Integración Viral , Replicación Viral , Línea Celular , Inhibidores de Integrasa VIH/metabolismo , VIH-1/enzimología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Biochimie ; 107 Pt B: 300-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25260582

RESUMEN

Xenotropic Murine Leukemia Virus-related Virus (XMRV) is a new gammaretrovirus generated by genetic recombination between two murine endogenous retroviruses, PreXMRV1 and PreXMRV2, during passaging of human prostate cancer xenografts in laboratory mice. XMRV is representative of an early founder virus that jumps species from mouse to human cell lines. Relatively little information is available concerning the XMRV integrase (IN), an enzyme that catalyzes a key stage in the retroviral cycle, and whose sequence is conserved among replication competent retroviruses emerging from recombination between the murine endogenous PreXMRV-1 and PreXMRV-2 genomes. Previous studies have shown that IN inhibitors efficiently block XMRV multiplication in cells. We thus aimed at characterizing the biochemical properties and sensitivity of the XMRV IN to the raltegravir, dolutegravir, 118-D-24 and elvitegravir inhibitors in vitro. We report for the first time the purification and enzymatic characterization of recombinant XMRV IN. This IN, produced in Escherichia coli and purified under native conditions, is optimally active over a pH range of 7-8.5, in the presence of Mg(2+) (15 mM and 30 mM for 3'-processing and strand transfer, respectively) and is poorly sensitive to the addition of dithiothreitol. Raltegravir was shown to be a very potent inhibitor (IC50 âˆ¼ 30 nM) whereas dolutegravir and elvitegravir were less effective (IC50 âˆ¼ 230 nM and 650 nM, respectively). The 118-D-24 drug had no impact on XMRV IN activity. Interestingly, the substrate specificity of XMRV IN seems to be less marked compared to HIV-1 IN since XMRV IN is able to process various donor substrates that share little homology. Finally, our analysis revealed some original properties of the XMRV IN such as its relatively low sequence specificity.


Asunto(s)
Inhibidores de Integrasa/farmacología , Integrasas/química , Integrasas/metabolismo , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/enzimología , Secuencia de Aminoácidos , Ditiotreitol/farmacología , Integrasa de VIH/química , Compuestos Heterocíclicos con 3 Anillos/farmacología , Concentración de Iones de Hidrógeno , Integrasas/genética , Integrasas/aislamiento & purificación , Datos de Secuencia Molecular , Oxazinas , Piperazinas , Piridonas , Pirrolidinonas/farmacología , Quinolonas/farmacología , Raltegravir Potásico , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(25): E2524-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927554

RESUMEN

The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.


Asunto(s)
Autoinmunidad , Glutamato Descarboxilasa , Homeostasis/inmunología , Simulación de Dinámica Molecular , Neurotransmisores , Ácido gamma-Aminobutírico , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/inmunología , Humanos , Neurotransmisores/química , Neurotransmisores/genética , Neurotransmisores/inmunología , Multimerización de Proteína , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/inmunología
13.
PLoS One ; 8(12): e84600, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376828

RESUMEN

BACKGROUND: Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is a target for antinuclear autoantibodies in systemic Lupus erythematosus (SLE), rheumatoid arthritis (RA), and autoimmune hepatitis (AIH). AIM: To monitor molecular interactions between peptides spanning the entire sequence of hnRNP A2/B1 and sera from patients and healthy controls. METHODS: Sera from 8 patients from each pathology and controls were passed across a surface plasmon resonance Imagery (SPRi) surface containing 39 overlapping peptides of 17 mers covering the human hnRNP B1. Interactions involving the immobilised peptides were followed in real time and dissociation rate constants k(off) for each interaction were calculated. RESULTS: Several significant interactions were observed: i) high stability (lower k(off) values) between P55₋70 and the AIH sera compared to controls (p= 0.003); ii) lower stability (higher k(off) values) between P118₋133 and P262₋277 and SLE sera, P145₋160 and RA sera compared to controls (p=0.006, p=0.002, p=0.007). The binding curves and k(off) values observed after the formation of complexes with anti-IgM and anti-IgG antibodies and after nuclease treatment of the serum indicate that i) IgM isotypes are prevalent and ii) nucleic acids participate in the interaction between anti-hnRNAP B1 and P55₋70 and also between controls and the peptides studied. CONCLUSIONS: These results indicate that P55₋70 of hnRNP B1 is a potential biomarker for AIH in immunological tests and suggest the role of circulating nucleic acids, (eg miRNA), present or absent according to the autoimmune disorders and involved in antigen-antibody stability.


Asunto(s)
Artritis Reumatoide/metabolismo , Biomarcadores/metabolismo , Hepatitis Autoinmune/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Resonancia por Plasmón de Superficie/métodos , Anticuerpos Antinucleares/metabolismo , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Immunoblotting , Péptidos/metabolismo , Estadísticas no Paramétricas
14.
PLoS One ; 7(12): e51776, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251620

RESUMEN

BACKGROUND: Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to the formation of etheno(ε)-bases including 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5' to a damaged base in a DNA glycosylase-independent manner. METHODOLOGY/PRINCIPAL FINDINGS: Here we have characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. Activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has a high affinity for DNA containing ε-bases but cleaves DNA duplexes at an extremely slow rate. Consistent with this observation, oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC(50) values in the range of 5-10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates, as expected, DNA fragments containing 5'-terminal ε-base residue. CONCLUSIONS/SIGNIFICANCE: The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggests that NIR may act as a backup pathway to BER to remove a large variety of genotoxic base lesions in human cells.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , Mutágenos/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Biocatálisis , Extractos Celulares , Sistema Libre de Células , Citosina/análogos & derivados , Citosina/metabolismo , Aductos de ADN/química , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células HeLa , Humanos , Cinética , Oligonucleótidos/metabolismo , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Timina/análogos & derivados , Timina/metabolismo , Factores de Tiempo
15.
PLoS One ; 7(9): e44287, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984487

RESUMEN

Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractive to analysis due to the prevalent high degree of non-specific binding. In this manuscript we explore the dynamic process of the formation of self-assembled monolayers and optimize physical and chemical properties thus reducing considerably non-specific binding while maintaining the integrity of the immobilized biomolecules. As a result, analysis of specific binding of analytes to immobilized target molecules is significantly facilitated.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Resonancia por Plasmón de Superficie/métodos , Adsorción , ADN/metabolismo , Ácidos Nucleicos Inmovilizados/metabolismo , Integrasas/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Retroviridae/metabolismo , Propiedades de Superficie , Factores de Tiempo
16.
J Virol ; 86(12): 6620-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496229

RESUMEN

Recombinant adeno-associated viruses (rAAVs) hold enormous potential for human gene therapy. Despite the well-established safety and efficacy of rAAVs for in vivo gene transfer, there is still little information concerning the fate of vectors in blood following systemic delivery. We screened for serum proteins interacting with different AAV serotypes in humans, macaques, dogs, and mice. We report that serotypes rAAV-1, -5, and -6 but not serotypes rAAV-2, -7, -8, -9, and -10 interact in human sera with galectin 3 binding protein (hu-G3BP), a soluble scavenger receptor. Among the three serotypes, rAAV-6 has the most important capacities for binding to G3BP. rAAV-6 also bound G3BP in dog sera but not in macaque and mouse sera. In mice, rAAV-6 interacted with another protein of the innate immune system, C-reactive protein (CRP). Furthermore, interaction of hu-G3BP with rAAV-6 led to the formation of aggregates and hampered transduction when the two were codelivered into the mouse. Based on these data, we propose that species-specific interactions of AAVs with blood proteins may differentially impact vector distribution and efficacy in different animal models.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Dependovirus/fisiología , Glicoproteínas/metabolismo , Animales , Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Proteínas Portadoras/sangre , Proteínas Portadoras/genética , Dependovirus/clasificación , Dependovirus/genética , Perros , Terapia Genética/instrumentación , Vectores Genéticos/clasificación , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Glicoproteínas/sangre , Glicoproteínas/genética , Humanos , Macaca , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Especificidad de la Especie , Transducción Genética
17.
PLoS One ; 5(8): e12152, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20730101

RESUMEN

BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65) and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen interaction where good structural, mechanistic and immunological data are available. Using SPRi we were able to characterise the kinetics of the interaction in greater detail than ELISA/RIA methods. Furthermore, our data indicate that SPRi is well suited to a multiplexed immunoassay using GAD65 proteins, and may be applicable to other biomarkers.


Asunto(s)
Reacciones Antígeno-Anticuerpo , Análisis por Matrices de Proteínas/métodos , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos Monoclonales/inmunología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/inmunología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/inmunología , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
18.
Nucleic Acids Res ; 38(11): 3692-708, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20164093

RESUMEN

HIV-1 integrase catalyzes the insertion of the viral genome into chromosomal DNA. We characterized the structural determinants of the 3'-processing reaction specificity--the first reaction of the integration process--at the DNA-binding level. We found that the integrase N-terminal domain, containing a pseudo zinc-finger motif, plays a key role, at least indirectly, in the formation of specific integrase-DNA contacts. This motif mediates a cooperative DNA binding of integrase that occurs only with the cognate/viral DNA sequence and the physiologically relevant Mg(2+) cofactor. The DNA-binding was essentially non-cooperative with Mn(2+) or using non-specific/random sequences, regardless of the metallic cofactor. 2,2'-Dithiobisbenzamide-1 induced zinc ejection from integrase by covalently targeting the zinc-finger motif, and significantly decreased the Hill coefficient of the Mg(2+)-mediated integrase-DNA interaction, without affecting the overall affinity. Concomitantly, 2,2'-dithiobisbenzamide-1 severely impaired 3'-processing (IC(50) = 11-15 nM), suggesting that zinc ejection primarily perturbs the nature of the active integrase oligomer. A less specific and weaker catalytic effect of 2,2'-dithiobisbenzamide-1 is mediated by Cys 56 in the catalytic core and, notably, accounts for the weaker inhibition of the non-cooperative Mn(2+)-dependent 3'-processing. Our data show that the cooperative DNA-binding mode is strongly related to the sequence-specific DNA-binding, and depends on the simultaneous presence of the Mg(2+) cofactor and the zinc effector.


Asunto(s)
ADN Viral/química , Proteínas de Unión al ADN/química , Integrasa de VIH/química , Zinc/química , Secuencias de Aminoácidos , Secuencia de Bases , Benzamidas/farmacología , Dominio Catalítico , ADN Viral/metabolismo , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Integrasa de VIH/efectos de los fármacos , Integrasa de VIH/metabolismo , Historia Medieval , Magnesio/química , Espectrometría de Masas , Unión Proteica , Estructura Terciaria de Proteína , Dedos de Zinc
19.
Chromosoma ; 118(5): 617-32, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19557426

RESUMEN

Synapsis of homologous chromosomes is a key meiotic event, mediated by a large proteinaceous structure termed the synaptonemal complex. Here, we describe a role in meiosis for the murine death-inducer obliterator (Dido) gene. The Dido gene codes for three proteins that recognize trimethylated histone H3 lysine 4 through their amino-terminal plant homeodomain domain. DIDO3, the largest of the three isoforms, localizes to the central region of the synaptonemal complex in germ cells. DIDO3 follows the distribution of the central region protein SYCP1 in Sycp3-/- spermatocytes, which lack the axial elements of the synaptonemal complex. This indicates that synapsis is a requirement for DIDO3 incorporation. Interestingly, DIDO3 is missing from the synaptonemal complex in Atm mutant spermatocytes, which form synapses but show persistent trimethylation of histone H3 lysine 4. In order to further address a role of epigenetic modifications in DIDO3 localization, we made a mutant of the Dido gene that produces a truncated DIDO3 protein. This truncated protein, which lacks the histone-binding domain, is incorporated in the synaptonemal complex irrespective of histone trimethylation status. DIDO3 protein truncation in Dido mutant mice causes mild meiotic defects, visible as gaps in the synaptonemal complex, but allows for normal meiotic progression. Our results indicate that histone H3 lysine 4 demethylation modulates DIDO3 localization in meiosis and suggest epigenetic regulation of the synaptonemal complex.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/genética , Meiosis/fisiología , Complejo Sinaptonémico/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Epigénesis Genética , Lisina/metabolismo , Masculino , Metilación , Ratones , Espermatocitos/metabolismo , Factores de Transcripción/genética
20.
J Biol Chem ; 283(41): 27838-27849, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18697740

RESUMEN

Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.


Asunto(s)
ADN/química , Integrasas/química , Modelos Químicos , Virus Espumoso de los Simios/enzimología , Proteínas Virales/química , Animales , Catálisis , Transferencia Resonante de Energía de Fluorescencia , Cobayas , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA