Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(21): 13599-13606, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742607

RESUMEN

The emergence of interlayer excitons (IX) in atomically thin heterostructures of transition metal dichalcogenides (TMDCs) has drawn great attention due to their unique and exotic optical and optoelectronic properties. Because of the spatially indirect nature of IX, its oscillator strength is 2 orders of magnitude smaller than that of the intralayer excitons, resulting in a relatively low photoluminescence (PL) efficiency. Here, we achieve the PL enhancement of IX by more than 2 orders of magnitude across the entire heterostructure area with a plasmonic lattice on mirror (PLoM) structure. The significant PL enhancement mainly arises from resonant coupling between the amplified electric field strength within the PLoM gap and the out-of-plane dipole moment of IX excitons, increasing the emission efficiency by a factor of around 47.5 through the Purcell effect. This mechanism is further verified by detuning the PLoM resonance frequency with respect to the IX emission energy, which is consistent with our theoretical model. Moreover, our simulation results reveal that the PLoM structure greatly alters the far-field radiation of the IX excitons preferentially to the surface normal direction, which increases the collection efficiency by a factor of around 10. Our work provides a reliable and universal method to enhance and manipulate the emission properties of the out-of-plane excitons in a deterministic way and holds great promise for boosting the development of photoelectronic devices based on the IX excitons.

3.
Nano Lett ; 24(8): 2488-2495, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38198618

RESUMEN

Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands. Full-wave electromagnetic modeling reveals that both near-field Coulomb interaction and far-field radiative coupling contribute to the observed CPICD, indicating that the mechanism considered here is universal for different material systems and types of optical resonances. Our study provides a set of design guidelines for broadband nanophotonic chiral sensing from the UV to NIR spectral regime.

4.
Opt Express ; 32(1): 879-890, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175110

RESUMEN

Conventional optical microscopes generally provide blurry and indistinguishable images for subwavelength nanostructures. However, a wealth of intensity and phase information is hidden in the corresponding diffraction-limited optical patterns and can be used for the recognition of structural features, such as size, shape, and spatial arrangement. Here, we apply a deep-learning framework to improve the spatial resolution of optical imaging for metal nanostructures with regular shapes yet varied arrangement. A convolutional neural network (CNN) is constructed and pre-trained by the optical images of randomly distributed gold nanoparticles as input and the corresponding scanning-electron microscopy images as ground truth. The CNN is then learned to recover reversely the non-diffracted super-resolution images of both regularly arranged nanoparticle dimers and randomly clustered nanoparticle multimers from their blurry optical images. The profiles and orientations of these structures can also be reconstructed accurately. Moreover, the same network is extended to deblur the optical images of randomly cross-linked silver nanowires. Most sections of these intricate nanowire nets are recovered well with a slight discrepancy near their intersections. This deep-learning augmented framework opens new opportunities for computational super-resolution optical microscopy with many potential applications in the fields of bioimaging and nanoscale fabrication and characterization. It could also be applied to significantly enhance the resolving capability of low-magnification scanning-electron microscopy.

5.
Adv Mater ; 36(15): e2310776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234149

RESUMEN

The participation of high-energy hot electrons generated from the non-radiative decay of localized surface plasmons is an important mechanism for promoting catalytic processes. Herein, another vital mechanism associated with the localized surface plasmon resonance (LSPR) effect, significantly contributing to the nitrogen reduction reaction (NRR), is found. That is to say, the LSPR-induced strong localized electric fields can weaken the intermolecular hydrogen bonds and regulate the arrangement of water molecules at the solid-liquid interface. The AuCu pentacle nanoparticles with excellent light absorption ability and the capability to generate strong localized electric fields are chosen to demonstrate this effect. The in situ Raman spectra and theoretical calculations are employed to verify the mechanism at the molecular scale in a nitrogen fixation process. Meanwhile, due to the promoted electron transfer at the interface by the well-ordered interfacial water, as well as the participation of high-energy hot electrons, the optimal catalyst exhibits excellent performance with an NH3 yield of 52.09 µg h-1 cm-2 and Faradaic efficiency (FE) of 45.82% at ─0.20 V versus RHE. The results are significant for understanding the LSPR effect in catalysis and provide a new approach for regulating the reaction process.

6.
Small ; 20(4): e2305251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37718454

RESUMEN

Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.

7.
Adv Mater ; : e2309459, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878233

RESUMEN

Over the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has experienced a remarkable ascent, soaring from 3.8% in 2009 to a remarkable record of 26.1% in 2023. Many recent approaches for improving PSC performance employ nanophotonic technologies, from light harvesting and thermal management to the manipulation of charge carrier dynamics. Plasmonic nanoparticles and arrayed dielectric nanostructures have been applied to tailor the light absorption, scattering, and conversion, as well as the heat dissipation within PSCs to improve their PCE and operational stability. In this review, it is begin with a concise introduction to define the realm of nanophotonics by focusing on the nanoscale interactions between light and surface plasmons or dielectric photonic structures. Prevailing strategies that utilize resonance-enhanced light-matter interactions for boosting the PCE and stability of PSCs from light trapping, carrier transportation, and thermal management perspectives are then elaborated, and the resultant practical applications, such as semitransparent photovoltaics, colored PSCs, and smart perovskite windows are discussed. Finally, the state-of-the-art nanophotonic paradigms in PSCs are reviewed, and the benefits of these approaches in improving the aesthetic effects and energy-saving character of PSC-integrated buildings are highlighted.

8.
Adv Mater ; : e2306414, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589261

RESUMEN

The use of chiral covalent organic frameworks (COFs) as active elements in photodetectors to directly identify circularly polarized light (CPL) can meet the requirement of integration and miniaturization of the as-fabricated devices. Herein, the design and synthesis of two isoreticular chiral two-dimensional (2D) COFs (CityU-7 and CityU-8) by introducing photosensitive porphyrin-based amines (5,10,15,20-tetrakis(4-aminophenyl)porphyrin) to enhance the optical absorption and chiral aldehyde linkage (2,5-bis((S/R))-2-methylbutoxy)terephthalaldehyde) to engender chirality for direct CPL detection  are  reported. Their crystalline structures  were  confirmed by powder X-ray diffraction, Fourier-transform infrared spectroscopy, and low-dose transition electron microscopy. Employing both chiral COFs as the active layers in photodetectors, left-handed circularly (LHC) and right-handed circularly (RHC) polarized light at 405 nm can be well distinguishable with short response time, high responsivity, and satisfying detectivity. The study provides the first example on the design and synthesis of chiral COFs for direct detection of CPL.

9.
Nat Commun ; 14(1): 5107, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607942

RESUMEN

Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical-aperture-related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focusing spot size. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL having a prolonged DoF, customized working distance (WD), minimized main-lobe size, and suppressed side-lobe intensity. Experimental implementation demonstrates simultaneous focusing of blue, green and red light beams into an optical needle of ~0.5λ in diameter and DOF > 10λ at WD = 428 µm. By integrating this SOL device with a commercial fluorescence microscope, we perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the "unseen" fine structures of neurons. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.

10.
Angew Chem Int Ed Engl ; 62(38): e202308853, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503554

RESUMEN

Nanoparticles (NPs) transfer is usually induced by adding ligands to modify NP surfaces, but aggregation of NPs oftentimes hampers the transfer. Here, we show that aggregation during NP phase transfer does not necessarily result in transfer failure. Using a model system comprising gold NPs and amphiphilic polymers, we demonstrate an unusual mechanism by which NPs can undergo phase transfer from the aqueous phase to the organic phase via a single-aggregation-single pathway. Our discovery challenges the conventional idea that aggregation inhibits NP transfer and provides an unexpected pathway for transferring larger-sized NPs (>20 nm). The charged amphiphilic polymers effectively act as chaperons for the NP transfer and offer a unique way to manipulate the dispersion and distribution of NPs in two immiscible liquids. Moreover, by intentionally jamming the NP-polymer assembly at the liquid/liquid interface, the transfer process can be inhibited.

11.
Proc Natl Acad Sci U S A ; 120(25): e2301620120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307475

RESUMEN

Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different "faces" of the particle. We employ three "faces" of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.

12.
Nat Chem ; 15(7): 930-939, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37353602

RESUMEN

Conventional light-driven cancer therapeutics require oxygen and visible light to indirectly damage biomolecules, limiting their efficacy in deep, hypoxic tumours. Here we report the use of near-infrared-activated small-molecule Pt(IV) photooxidants to directly oxidize intracellular biomolecules in an oxygen-independent manner, achieving controllable and effective elimination of cancer stem cells. These Pt(IV) complexes accumulate in the endoplasmic reticulum and show low toxicity in the dark. Upon irradiation, the resultant metal-enhanced photooxidation effect causes them to robustly photooxidize survival-related biomolecules, induce intense oxidative stress, disrupt intracellular pH (pHi) homeostasis and initiate nonclassical necrosis. In vivo experiments confirm that the lead photooxidant can effectively inhibit tumour growth, suppress metastasis and activate the immune system. Our study validates the concept of metal-enhanced photooxidation and the subsequent chemotherapeutic applications, supporting the development of such localized photooxidants to directly damage intracellular biomolecules and decrease pHi as a strategy for effective metal-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Platino (Metal)/química , Platino (Metal)/uso terapéutico , Antineoplásicos/química , Oxígeno , Neoplasias/tratamiento farmacológico , Luz , Línea Celular Tumoral
13.
Nat Commun ; 14(1): 2507, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130871

RESUMEN

The growing prevalence of counterfeit products worldwide poses serious threats to economic security and human health. Developing advanced anti-counterfeiting materials with physical unclonable functions offers an attractive defense strategy. Here, we report multimodal, dynamic and unclonable anti-counterfeiting labels based on diamond microparticles containing silicon-vacancy centers. These chaotic microparticles are heterogeneously grown on silicon substrate by chemical vapor deposition, facilitating low-cost scalable fabrication. The intrinsically unclonable functions are introduced by the randomized features of each particle. The highly stable signals of photoluminescence from silicon-vacancy centers and light scattering from diamond microparticles can enable high-capacity optical encoding. Moreover, time-dependent encoding is achieved by modulating photoluminescence signals of silicon-vacancy centers via air oxidation. Exploiting the robustness of diamond, the developed labels exhibit ultrahigh stability in extreme application scenarios, including harsh chemical environments, high temperature, mechanical abrasion, and ultraviolet irradiation. Hence, our proposed system can be practically applied immediately as anti-counterfeiting labels in diverse fields.

14.
Sci Adv ; 9(14): eadg1837, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027471

RESUMEN

Thermal management plays a notable role in electronics, especially for the emerging wearable and skin electronics, as the level of integration, multifunction, and miniaturization of such electronics is determined by thermal management. Here, we report a generic thermal management strategy by using an ultrathin, soft, radiative-cooling interface (USRI), which allows cooling down the temperature in skin electronics through both radiative and nonradiative heat transfer, achieving temperature reduction greater than 56°C. The light and intrinsically flexible nature of the USRI enables its use as a conformable sealing layer and hence can be readily integrated with skin electronics. Demonstrations include passive cooling down of Joule heat for flexible circuits, improving working efficiency for epidermal electronics, and stabling performance outputs for skin-interfaced wireless photoplethysmography sensors. These results offer an alternative pathway toward achieving effective thermal management in advanced skin-interfaced electronics for multifunctionally and wirelessly operated health care monitoring.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrónica/métodos , Piel , Epidermis , Frío
15.
Nano Lett ; 23(12): 5851-5858, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37067172

RESUMEN

The ultrasmall mode volume and ultralarge local field enhancement of compact plasmonic nanocavities have been widely explored to amplify a variety of optical phenomena at the nanoscale. Other than passively generating near-field enhancements, dynamic tuning of their intensity and associated nonlinear optical processes such as second-harmonic generation (SHG) play vital roles in the field of active nanophotonics. Here we apply a host-guest molecular complex to construct a photoswitchable molecule-sandwiched metallic particle-on-film nanocavity (MPoFN) and demonstrate both light-controlled linear and nonlinear optical tuning. Under alternating illumination of ultraviolet (UV) and visible light, the photoactive plasmonic molecular nanocavity shows reversible switching of both surface-enhanced Raman scattering (SERS) and plasmon resonance. Surprisingly, we observe more significant modulation of SHG from this photoactive MPoFN, which can be explained qualitatively by the quantum conductivity theory (QCT). Our study could pave the way for developing miniaturized integrated optical circuits for ultrafast all-optical information processing and communication.

16.
Phys Rev Lett ; 130(10): 103001, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962020

RESUMEN

We present a microscopic theory for nonlinear optical spectroscopy of N molecules in an optical cavity. Using the Heisenberg-Langevin equation, an analytical expression is derived for the time- and frequency-resolved signals accounting for arbitrary numbers of vibrational excitations. We identify clear signatures of the polariton-polaron interaction from multidimensional projections of the signal, e.g., pathways and timescales. Cooperative dynamics of cavity polaritons against intramolecular vibrations is revealed, along with a crosstalk between long-range coherence and vibronic coupling that may lead to localization effects. Our results further characterize the polaritonic coherence and the population transfer that is slower.

17.
Small ; 19(26): e2301476, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949015

RESUMEN

The introduction of structural complexity to nanoparticles brings them interesting properties. Regularity breaking has been challenging in the chemical synthesis of nanoparticles. Most reported chemical methods for synthesizing irregular nanoparticles are complicated and laborious, largely hindering the exploration of structural irregularity in nanoscience. In this study, the authors have combined seed-mediated growth and Pt(IV)-induced etching to synthesize two types of unprecedented Au nanoparticles, bitten nanospheres and nanodecahedrons, with size control. Each nanoparticle has an irregular cavity on it. They exhibit distinct single-particle chiroptical responses. Perfect Au nanospheres and nanorods without any cavity do not show optical chirality, which demonstrates that the geometrical structure of the bitten opening plays a decisive role in the generation of chiroptical responses.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121801, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122462

RESUMEN

Porous membrane-based nanofiltration separation of small biomolecules is a widely used biotechnology for which size-based selectivity is a critical parameter of technological relevance. Efficient determination of size selectivity calls for an advanced detection method capable of performing sensitive, rapid, and on-membrane examination. Surface-enhanced Raman spectroscopy (SERS) is such a detection method that has been widely recognized as an ultrasensitive technique for trace-level detection with sensitivity down to the single-molecule level. In this work, we for the first time develop a double-sided hierarchical porous membrane-like plasmonic metasurface to realize high-selectivity bimolecular separation and simultaneous ultrasensitive SERS detection. This highly flexible device, consisting of subwavelength nanocone pairs surrounded by randomly orientated sub-5 nm nanogrooves, was prepared by combining customized "top-down" fabrication of conical nanopores in an ion-track registered polycarbonate membrane and self-assembly of nanogrooves on the membrane surface through physical vapor deposition. The unique tip-to-tip oriented conical nanopores in the device enables excellent size-based molecular selectivity; the hierarchical groove-pore structure supports a peculiar cascaded electromagnetic near-field enhancement mechanism, endowing the device with SERS-based molecular detection of ultrahigh sensitivity, uniformity, repeatability, and polarization independence. With such dual structural merits and performance enhancement, we demonstrate effective nanofiltration separation of small-sized adenine from big-sized ss-DNA and synergistic SERS determination of their species. We experimentally demonstrate an ultrasensitive detection of 4-mercaptopyridine down to 10 pM. Together with its unparalleled mechanical flexibility, this double-side-responsive plasmonic metasurface membrane can find great potential in real-world molecular filtration and detection under extremely complex working conditions.


Asunto(s)
Nanopartículas del Metal , Nanoporos , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Nanotecnología , ADN
19.
Nat Commun ; 13(1): 6144, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253372

RESUMEN

The greatest challenge that limits the application of pyro-catalytic materials is the lack of highly frequent thermal cycling due to the enormous heat capacity of ambient environment, resulting in low pyro-catalytic efficiency. Here, we introduce localized plasmonic heat sources to rapidly yet efficiently heat up pyro-catalytic material itself without wasting energy to raise the surrounding temperature, triggering a significantly expedited pyro-catalytic reaction and enabling multiple pyro-catalytic cycling per unit time. In our work, plasmonic metal/pyro-catalyst composite is fabricated by in situ grown gold nanoparticles on three-dimensional structured coral-like BaTiO3 nanoparticles, which achieves a high hydrogen production rate of 133.1 ± 4.4 µmol·g-1·h-1 under pulsed laser irradiation. We also use theoretical analysis to study the effect of plasmonic local heating on pyro-catalysis. The synergy between plasmonic local heating and pyro-catalysis will bring new opportunities in pyro-catalysis for pollutant treatment, clean energy production, and biological applications.

20.
Nano Lett ; 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190454

RESUMEN

Plasmon-mediated chemical reactions have attracted intensive research interest as a means of achieving desirable reaction yields and selectivity. The energetic charge carriers and elevated local temperature induced by the nonradiative decay of surface plasmons are thought to be responsible for improving reaction outcomes. This study reports that the plasmoelectric potential is another key contributor in plasmon-mediated electrochemistry. Additionally, we disclose a convenient and reliable method for quantifying the specific contributions of the plasmoelectric potential, hot electrons, and photothermal heating to the electroreduction of oxygen at the plasmonic Ag electrode, revealing that the plasmoelectric potential is the dominating nonthermal factor under short-wavelength illumination and moderate electrode bias. This work elucidates novel mechanistic understandings of plasmon-mediated electrochemistry, facilitating high-performance plasmonic electrocatalyst design optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...