Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19087, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154107

RESUMEN

As computer image processing and digital technologies advance, creating an efficient method for classifying sports images is crucial for the rapid retrieval and management of large image datasets. Traditional manual methods for classifying sports images are impractical for large-scale data and often inaccurate when distinguishing similar images. This paper introduces an SE module that adaptively adjusts the weights of input feature mapping channels, and a Res module that excels in deep feature extraction, preventing gradient vanishing, multi-scale processing, and enhancing generalization in image recognition. Through extensive experimentation on network structure adjustments, the SE-RES-CNN neural network model is applied to sports image classification. The model is trained on a sports image classification dataset from Kaggle, alongside VGG-16 and ResNet50 models. Training results show that the proposed SE-RES-CNN model improves classification accuracy by approximately 5% compared to VGG-16 and ResNet50 models. Testing revealed that the SE-RES-CNN model classifies 100 out of 500 sports images in 6 s, achieving an accuracy rate of up to 98% and a single prediction time of 0.012 s. This validates the model's accuracy and effectiveness, significantly enhancing sports image retrieval and classification efficiency. This validates the model's accuracy and effectiveness, significantly enhancing sports image retrieval and classification efficiency.

2.
Sci Rep ; 13(1): 14670, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673930

RESUMEN

With the rapid development of computer technology, artificial intelligence and big data technology have undergone a qualitative leap, permeating into various industries. In order to fully harness the role of artificial intelligence in the field of nuclear engineering, we propose to use the LSTM algorithm in deep learning to model the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) core first cycle loading. The BEAVRS core is simulated by DRAGON and DONJON, the training set and the test set are arranged in a sequential fashion according to the evolution of time, and the LSTM model is constructed by changing a number of hyperparameters. In addition to this, the training set and the test set are retained in a chronological order that is different from one another throughout the whole process. Additionally, there is a significant pattern that is followed when subsetting both the training set and the test set. This pattern applies to both sets. The steps in this design are very carefully arranged. The findings of the experiments suggest that the model can be altered by making use of the appropriate hyperparameters in such a way as to bring the maximum error of the effective multiplication factor keff prediction of the core within 2.5 pcm (10-5), and the average error within 0.5266 pcm, which validated the successful application of machine learning to transport equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA