Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Plants (Basel) ; 13(3)2024 Feb 03.
Article En | MEDLINE | ID: mdl-38337981

Sugarcane is the most important sugar crop and one of the leading energy-producing crops in the world. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, poses a huge threat to ratoon crops, causing a significant yield loss in sugarcane. Breeding resistant varieties is considered the most effective and fundamental approach to control RSD in sugarcane. The exploration of resistance genes forms the foundation for breeding resistant varieties through molecular technology. The pglA gene is a pathogenicity gene in L. xyli subsp. xyli, encoding an endopolygalacturonase. In this study, the pglA gene from L. xyli subsp. xyli and related microorganisms was analyzed. Then, a non-toxic, non-autoactivating pglA bait was successfully expressed in yeast cells. Simultaneously the yeast two-hybrid library was generated using RNA from the L. xyli subsp. xyli-infected sugarcane. Screening the library with the pglA bait uncovered proteins that interacted with pglA, primarily associated with ABA pathways and the plant immune system, suggesting that sugarcane employs these pathways to respond to L. xyli subsp. xyli, triggering pathogenicity or resistance. The expression of genes encoding these proteins was also investigated in L. xyli subsp. xyli-infected sugarcane, suggesting multiple layers of regulatory mechanisms in the interaction between sugarcane and L. xyli subsp. xyli. This work promotes the understanding of plant-pathogen interaction and provides target proteins/genes for molecular breeding to improve sugarcane resistance to L. xyli subsp. xyli.

2.
Front Pharmacol ; 11: 616813, 2020.
Article En | MEDLINE | ID: mdl-33574759

Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What's more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.

...