Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Infect Dis ; 229(6): 1637-1647, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38147361

BACKGROUND: The pathogenesis of Chlamydia trachomatis is associated with the induction of the host inflammatory response; however, the precise underlying molecular mechanisms remain poorly understood. METHODS: CT622, a T3SS effector protein, has an important role in the pathogenesis of C trachomatis; however, whether CT622 can induce a host inflammatory response is not understood. Our findings demonstrate that CT622 induces the expression of interleukins 6 and 8 (IL-6 and IL-8). Mechanistically, these effects involve the activation of the MAPK/NF-κB signaling pathways (mitogen-activated protein kinase/nuclear factor κB). RESULTS: Interestingly, we demonstrated that the suppression of toll-like receptor 4 using small interfering RNA markedly reduced the phosphorylation of ERK, p38, JNK, and IκBα, concomitant with a significant decrease in IL-6 and IL-8 secretion. Conversely, disruption of toll-like receptor 2 abrogated the CT622-induced upregulation of IL-8 and activation of ERK, whereas IL-6 expression and p38, JNK, and IκBα phosphorylation were unaffected. CONCLUSIONS: Taken together, these results indicate that CT622 contributes to the inflammatory response through the toll-like receptor 2/4-mediated MAPK/NF-κB pathways, which provides insight into the molecular pathology of C trachomatis infection.


Chlamydia trachomatis , Cytokines , NF-kappa B , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Humans , Chlamydia trachomatis/immunology , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , THP-1 Cells , Cytokines/metabolism , Signal Transduction , Interleukin-6/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia Infections/metabolism , Interleukin-8/metabolism , Type III Secretion Systems/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Phosphorylation
2.
J Clin Med ; 12(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37445287

Our aim was to assess the therapeutic efficacy of a modified single-arm suture technique on traumatic cyclodialysis cleft with vitreoretinal injury. The procedure involved fixing a detached ciliary body using a single-armed 10-0 polypropylene suture under the assistance of a 29-gauge needle. Patients with a traumatic cyclodialysis cleft combined with an anterior and posterior segment injury who underwent modified internal cyclopexy together with vitreoretinal surgery were enrolled in this study. Ultrasound biomicroscopy (UBM) was used to diagnose and evaluate the cyclodialysis and anterior segment injury. B-scan ultrasonography was performed to assess the condition of the vitreous, retina and choroid. The surgical time and successful rate for repairing the cyclodialysis cleft were recorded. Preoperative and postoperative best-corrected visual acuity (BCVA), and intraocular pressure (IOP) were documented for assessment. The study included 20 eyes. The extent of the cyclodialysis cleft was from 30° to 360°. Besides a traumatic cyclodialysis cleft, the included cases also combined this with vitreous hemorrhages, retinal detachment, macular holes, choroid avulsion, and suprachoroidal hemorrhage. All the clefts were anatomically closed in one surgery. The average surgical time for fixing the cyclodialysis cleft was 2.68 ± 0.54 min/30° cleft. A significant improvement in LogMAR BCVA was observed from 2.94 ± 0.93 preoperatively to 1.81 ± 1.11 at the 6-month follow-up. IOP was elevated from 10.90 ± 6.18 mmHg preoperatively to 14.45 ± 2.35 mmHg at the 6-month follow-up. The modified single-armed suture technique was proved to be an effective method to fix the traumatic cyclodialysis cleft, which could facilitate the use of the procedure to repair chorioretinal disorders. It improved the BCVA and maintained the IOP with less postoperative complications.

3.
Microb Pathog ; 178: 106056, 2023 May.
Article En | MEDLINE | ID: mdl-36893904

As an obligate intracellular pathogen, Chlamydia trachomatis assumes various strategies to inhibit host cells apoptosis, thereby providing a suitable intracellular environment to ensure completion of the development cycle. In the current study, we revealed that Pgp3 protein, one of eight plasmid proteins of C. trachomatis that has been illustrated as the key virulence factor, increased HO-1 expression to suppress apoptosis, and downregulation of HO-1 with siRNA-HO-1 failed to exert anti-apoptosis activity of Pgp3 protein. Moreover, treatment of PI3K/Akt pathway inhibitor and Nrf2 inhibitor evidently reduced HO-1 expression and Nrf2 nuclear translocation was blocked by PI3K/Akt pathway inhibitor. These findings highlight that induction of HO-1 expression by Pgp3 protein is probably due to regulation of Nrf2 nuclear translocation activated by PI3K/Akt pathway, which provide clues on how C. trachomatis adjusts apoptosis.


Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Chlamydia trachomatis , Oxidative Stress , NF-E2-Related Factor 2/metabolism
4.
Front Immunol ; 13: 989620, 2022.
Article En | MEDLINE | ID: mdl-36505424

Considering the shortcomings in current chlamydia infection control strategies, a major challenge in curtailing infection is the implementation of an effective vaccine. The immune response induced by C. trachomatis plasmid encoded Pgp3 was insufficient against C. trachomatis infection, which requires adjuvant applications to achieve the robust immune response induced by Pgp3. There is increasing promising in developing adjuvant systems relying on the delivery potential of Pickering emulsions and the immunomodulatory effects of interleukin (IL)-12. Here, owing to the polycationic nature, chitosan particles tended to absorb on the oil/water interphase to prepare the optimized chitosan particle-stabilized Pickering emulsion (CSPE), which was designed as a delivery system for Pgp3 protein and IL-12. Our results showed that the average droplets size of CSPE was 789.47 ± 44.26 nm after a series of optimizations and about 90% antigens may be absorbed by CSPE owing to the positively charged surface (33.2 ± 3mV), and CSPE promoted FITC-BSA proteins uptake by macrophages. Furthermore, as demonstrated by Pgp3-specific antibody production and cytokine secretion, CSPE/IL-12 system enhanced significantly higher levels of Pgp3-specific IgG, IgG1, IgG2a, sIgA and significant cytokines secretion of IFN-γ, IL-2, TNF-α, IL-4. Similarly, vaginal chlamydial shedding and hydrosalpinx pathologies were markedly reduced in mice immunized with Pgp3/CSPE/IL-12. Collectively, vaccination with Pgp3/CSPE/IL-12 regimen elicited robust cellular and humoral immune response in mice resulting in an obvious reduction of live chlamydia load in the vaginal and inflammatory pathologies in the oviduct, which further propells the development of vaccines against C. trachomatis infection.


Chitosan , Chlamydia Infections , Urinary Tract Infections , Female , Mice , Animals , Interleukin-12 , Chlamydia Infections/prevention & control , Adjuvants, Pharmaceutic , Adjuvants, Immunologic , Genitalia , Vaccines, Subunit , Emulsions , Chlamydia trachomatis
5.
DNA Cell Biol ; 41(11): 924-934, 2022 Nov.
Article En | MEDLINE | ID: mdl-36356165

Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in cells as part of normal physiology but more frequently manifested in the pathophysiology of many diseases, particularly diseases involving acute or chronic inflammation. In this study, we reviewed recent findings about the role of ER stress and OS in the pathogenesis of inflammatory diseases.


Endoplasmic Reticulum Stress , Oxidative Stress , Humans , Endoplasmic Reticulum Stress/physiology , Oxidative Stress/physiology , Inflammation , Reactive Oxygen Species
6.
Front Microbiol ; 13: 877223, 2022.
Article En | MEDLINE | ID: mdl-35572713

Since we previously reported that women infected with chlamydia had a significant overall reduction in Lactobacillus in the vagina microbiota as compared to those uninfected individuals; the interactions between the altered Lactobacillus and Chlamydia trachomatis, on the other hand, need to be elucidated. Here, we employed both in vitro and in vivo models to evaluate the effects of this changed Lactobacillus on Chlamydia infection. We found that L. iners, L. crispatus, L. jensenii, L. salivarius, L. gasseri, L. mucosae, and L. reuteri all significantly reduced C. trachomatis infection in a dose- and time-dependent manner. The strongest anti-Chlamydia effects were found in L. crispatus (90 percent reduction), whereas the poorest was found in L. iners (50 percent reduction). D (-) lactic acid was the key component in Lactobacillus cell-free supernatants (CFS) to inactivate Chlamydia EBs, showing a positive correlation with the anti-Chlamydia activity. The effects of D (-) lactic acid were substantially attenuated by neutralizing the pH value to 7.0. In vivo, mice intravaginally inoculated with Lactobacillus mixtures (L. crispatus, L. reuteri, and L. iners at a ratio of 1:1:1), but not single Lactobacillus, after genital Chlamydia infection, significantly attenuated the levels of Chlamydia live organism shedding in both the lower genital tract and the intestinal tract, reduced cytokines production (TNF-α, IFN-γ, and IL-1ß) in the vagina, and lessened upper genital tract inflammation and pathogenicity. Taken together, these data demonstrate that Lactobacillus inhibits Chlamydia infectivity both in vivo and in vitro, providing useful information for the development of Lactobacillus as adjunctive treatment in Chlamydia infection.

7.
Front Cell Infect Microbiol ; 12: 835181, 2022.
Article En | MEDLINE | ID: mdl-35321312

Mitochondria are intracellular organelles that are instrumental in the creation of energy, metabolism, apoptosis, and intrinsic immunity. Mitochondria exhibit an extraordinarily high degree of flexibility, and are constantly undergoing dynamic fusion and fission changes. Chlamydia is an intracellular bacterium that causes serious health problems in both humans and animals. Due to a deficiency of multiple metabolic enzymes, these pathogenic bacteria are highly dependent on their eukaryotic host cells, resulting in a close link between Chlamydia infection and host cell mitochondria. Indeed, Chlamydia increase mitochondrial fusion by inhibiting the activation of dynein-related protein 1 (DRP1), which can regulate host cell metabolism for extra energy. Additionally, Chlamydia can inhibit mitochondrial fission by blocking DRP1 oligomerization, preventing host cell apoptosis. These mechanisms are critical for maintaining a favorable environment for reproduction and growth of Chlamydia. This review discusses the molecular mechanisms of mitochondrial fusion and fission, as well as the mechanisms by which Chlamydia infection alters the mitochondrial dynamics and the prospects of limiting chlamydial development by altering mitochondrial dynamics.


Chlamydia Infections , Mitochondrial Dynamics , Animals , Apoptosis , Chlamydia Infections/microbiology , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
8.
Virulence ; 13(1): 444-457, 2022 12.
Article En | MEDLINE | ID: mdl-35266440

Persistent infection of Chlamydia trachomatis is thought to be responsible for the debilitating sequelae of blinding trachoma and infertility. Inhibition of host cell apoptosis is a persistent C. trachomatis infection mechanism. ZEB1-AS1 is a long non-coding RNA (lncRNA), which was up-regulated in persistent C. trachomatis infection in our previous work. In this study, we investigated the role of ZEB1-AS1 in persistent infection and the potential mechanisms. The results showed that ZEB1-AS1 was involved in the regulation of apoptosis, and targeted silencing of ZEB1-AS1 could increase the apoptosis rate of persistently infected cells. Mechanically, interference ZEB1-AS1 caused an apparent down-regulation of the Bcl-2/Bax ratio and the repression of the mitochondrial membrane potential with the remarkable release of cytochrome c, resulting in the significant elevation level of caspase-3 activation. Meanwhile, the luciferase reporter assay confirmed that ZEB1-AS1 acted as a sponge for miR-1224-5p to target MAP4K4. The regulatory effect of miR-1224-5p/MAP4K4 on persistent infection-induced antiapoptosis was regulated by ZEB1-AS1. In addition, ZEB1-AS1 inhibited the apoptosis of Chlamydia-infected cells by activating the MAPK/ERK pathway. In conclusion, we found a new molecular mechanism that the ZEB1-AS1/miR-1224-5p/MAP4K4 axis contributes to apoptosis resistance in persistent C. trachomatis infection. This work may help understand the pathogenic mechanisms of persistent C. trachomatis infection and reveal a potential therapeutic strategy for its treatment.


MicroRNAs , RNA, Long Noncoding , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Protein Serine-Threonine Kinases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
9.
J Cell Mol Med ; 26(1): 163-177, 2022 01.
Article En | MEDLINE | ID: mdl-34859581

Chlamydia trachomatis persistent infection is the leading cause of male prostatitis and female genital tract diseases. Inhibition of host cell apoptosis is the key to maintaining Chlamydia survival in vivo, and long noncoding RNAs (lncRNAs) play important roles in its developmental cycle and pathogenesis. However, it is not clear how lncRNAs regulate persistent Chlamydia infection. Here, using a microarray method, we identified 1718 lncRNAs and 1741 mRNAs differentially expressed in IFN-γ-induced persistent C. trachomatis infection. Subsequently, 10 upregulated and 5 downregulated differentially expressed lncRNAs were verified by qRT-PCR to confirm the reliability of the chip data. The GO and KEGG analyses revealed that differentially regulated transcripts were predominantly involved in various signalling pathways related to host immunity and apoptosis response. Targeted silencing of three lncRNAs (MIAT, ZEB1-AS1 and IRF1) resulted in increased apoptosis rates. Furthermore, interference with lncRNA MIAT caused not only an obvious downregulation of the Bcl-2/Bax ratio but also a marked release of cytochrome c, resulting in a significantly elevated level of caspase-3 activation. Meanwhile, MIAT was involved in the regulation of chlamydial development during the persistent infection. Collectively, these observations shed light on the enormous complex lncRNA regulatory networks involved in mitochondria-mediated host cell apoptosis and the growth and development of C. trachomatis.


Apoptosis , Chlamydia Infections , RNA, Long Noncoding , Apoptosis/genetics , Chlamydia Infections/genetics , Chlamydia trachomatis/pathogenicity , Female , Humans , Male , Mitochondria/metabolism , RNA, Long Noncoding/genetics , Reproducibility of Results , Up-Regulation/genetics
10.
Front Cell Infect Microbiol ; 11: 701352, 2021.
Article En | MEDLINE | ID: mdl-34568091

Background: Chlamydia trachomatis (Ct) is one of the most common bacterial sexually transmitted infection (STI) pathogens in the world, but the exact pathogenic mechanism still needs to be further elucidated. Long non-coding RNAs (lncRNAs) have become vital regulators in many biological processes. Their role in the interaction between Ct and host cells has not been reported. Methods: Microarrays were used to study the expression profiles of lncRNAs and mRNAs in HeLa cells at 12, 24, and 40 h post-infection (hpi). Differentially expressed lncRNAs and mRNAs were verified by RT-qPCR. Coding-non-coding (CNC) network analysis showed co-expression molecules of selected lncRNA. Western blot, flow cytometry, and indirect immunofluorescence were used to detect the effect of lncRNA FGD5-AS1 on apoptosis during Ct infection. Results: Compared with the uninfected group, the number of differential lncRNAs were 2,130, 1,081, and 1,101 at 12, 24, and 40 hpi, and the number of differential mRNAs was 1,998, 1,129, and 1,330, respectively. Ct induced differential expression of large amounts of lncRNAs and mRNAs in HeLa cells, indicating that lncRNAs may play roles in the pathogenesis of Ct. RT-qPCR verified six differential lncRNAs and six differential mRNAs, confirming the reliability of the microarray. Among these molecules, lncRNA FGD5-AS1 was found to be upregulated at 12 and 24 hpi. Coding-non-coding (CNC) network analysis showed that co-expressed differential molecules of FGD5-AS1 at 12 and 24 hpi were enriched in the DNA replication and Wnt signaling pathway. The downregulation of FGD5-AS1 decreased the expression of ß-catenin and inhibited the translocation of ß-catenin and the DNA replication, while it promoted apoptosis of the host cells. Conclusions: DNA replication and apoptosis of host cells were affected by upregulating FGD5-AS1 via Wnt/ß-catenin pathway during Ct infection. This study provides evidence that lncRNAs are involved in the coaction between Ct and hosts, and provides new insights into the study of lncRNAs that regulate chlamydial infection.


Apoptosis , Chlamydia Infections/genetics , RNA, Long Noncoding , Wnt Signaling Pathway , Cell Proliferation , Chlamydia trachomatis/genetics , Guanine Nucleotide Exchange Factors , HeLa Cells , Humans , RNA, Long Noncoding/genetics , Reproducibility of Results
11.
Front Cell Infect Microbiol ; 11: 698840, 2021.
Article En | MEDLINE | ID: mdl-34414130

Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) worldwide and causes serious health sequelae such as cervicitis, pelvic inflammatory disease, and even infertility if ascending from the lower to the upper female genital tract. Previous studies have revealed the pivotal role of vaginal microbiota in susceptibility to STIs. However, alterations in the vaginal microbiota in women who are infertile and infected with C. trachomatis remain unknown. This study used metagenomic analysis of sequenced 16S rRNA gene amplicons to examine the vaginal microbial profiles of women with tubal infertility who were C. trachomatis-negative and those who were C. trachomatis-positive pre- and post-antibiotic treatment. Women who were C. trachomatis-negative and deemed healthy were recruited as references of eubiosis and dysbiosis. Women with tubal infertility and C. trachomatis infection presented a unique Lactobacillus iners-dominated vaginal microbiota rather than one dominated by Lactobacillus crispatus and displayed a decrease in Lactobacillus, Bifidobacterium, Enterobacter, Atopobium, and Streptococcus, accompanied by decreased levels of cytokines such as interferon (IFN)-γ and interleukin (IL)-10. This altered vaginal microbiota could be restored with varying degrees after standard treatment for C. trachomatis. This shift could be a predictive vaginal microbiota signature for C. trachomatis infection among females with tubal infertility, while no significant differences in phylum, class, and operational taxonomic unit (OTU) levels were observed between women with tubal infertility who were C. trachomatis-negative and healthy controls. This is the first study to provide data on the association of vaginal microbiota with C. trachomatis infection among women with tubal infertility and highlights unprecedented potential opportunities to predict C. trachomatis infection.


Infertility , Microbiota , Chlamydia trachomatis , Female , Humans , Lactobacillus , RNA, Ribosomal, 16S/genetics
12.
Life Sci ; 277: 119502, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-33891941

AIM: Chlamydia trachomatis has evolved various strategies to alleviate oxidative stress of host cells to maintain their intracellular survival. However, the exact mechanism of anti-oxidative stress of C. trachomatis is still unclear. The activation of nuclear factor erythroid 2-related factor 2/quinone oxidoreductase (Nrf2/NQO1) signal pathway has been identified as an efficient antioxidant defensive mechanism used by host cells to counteract oxidative stress. Pgp3 is a pivotal virulence factor of C. trachomatis involved in intracellular survival. The aim of this study is to explore the role of Pgp3 on Nrf2/NQO1 signal pathway against oxidative stress. MAIN METHODS: After HeLa cells were stimulated with Pgp3 protein, Nrf2 location and the inclusion bodies of C. trachomatis were detected by indirect immunofluorescence, western blotting and Oxidative stress assay kits were used to separately determine the protein expression and the content of malondialdehyde (MDA), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) before and after the interference of Nrf-2 and NQO1. KEY FINDINGS: Pgp3 promoted the nuclear translocation of Nrf2 to increase NQO1 expression and reduced oxidative stress induced by LPS to contribute to the survival of C. trachomatis. Inhibition of Nrf2/NQO1 signal pathway with Nrf2 inhibitor and down-regulation of NQO1 with siRNA-NQO1 suppressed oxidative stress resistance induced by Pgp3. SIGNIFICANCE: Here we found that Pgp3 alleviated oxidative stress to promote the infectivity of C. trachomatis through activation of Nrf2/NQO1 signal pathway, which provided a novel understanding of the effects of Pgp3 in the pathogenesis of C. trachomatis.


Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Chlamydia trachomatis/metabolism , Antigens, Bacterial/physiology , Bacterial Proteins/physiology , Cell Survival/drug effects , HeLa Cells , Heme Oxygenase-1/metabolism , Humans , Malondialdehyde/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Superoxide Dismutase/metabolism
13.
Mol Cell Biochem ; 452(1-2): 167-176, 2019 Feb.
Article En | MEDLINE | ID: mdl-30132214

Chlamydia trachomatis, the most common human pathogen that causes trachoma and sexually transmitted disease, has developed various strategies for inhibiting host cell apoptosis. Activation of the PI3K (phosphoinositide 3-kinase)/AKT-mediated MDM2 (murine double minute 2)-p53 pathway plays a prominent role in the apoptosis resistance arising from C. trachomatis infection. However, the precise upstream mechanisms by which C. trachomatis activates this pathway have not been adequately investigated. Here, we reveal that the secreted C. trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis in HeLa cells. This process requires the activation of the PI3K/AKT signaling pathway, thereby leading to phosphorylation and nuclear entry of MDM2, and p53 degradation. PI3 K inhibitor LY294002 and MDM2 inhibitor Nutlin-3a block Pgp3-induced inhibition of HeLa cell apoptosis, suggesting a critical role for the PI3K/AKT pathway and its effect on the MDM2-p53 axis in Pgp3 anti-apoptotic activity.


Antigens, Bacterial/metabolism , Apoptosis , Bacterial Proteins/metabolism , Chlamydia trachomatis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Chlamydia Infections/genetics , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , HeLa Cells , Humans , Phosphorylation , Plasmids/administration & dosage , Plasmids/genetics , Signal Transduction
14.
Am J Transl Res ; 10(6): 1633-1647, 2018.
Article En | MEDLINE | ID: mdl-30018706

OBJECTIVE: This study is to identify and investigate the proteins interacting with pORF5 implicated in the pathogenesis of C. trachomatis. METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with nano liquid chromatography-tandem mass spectrometry (NanoLC-MS/MS) analysis was applied to identify and quantify the differentially expressed proteins in the pORF5-transfected HeLa (pORF5-HeLa) cells and the control vector-transfected HeLa (vector-HeLa) cells. Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the mRNA and protein expression levels. RESULTS: Totally 3355 proteins were quantified by employing biological replicates, 314 of which were differentially expressed between the pORF5-HeLa and vector-HeLa cells. Nine differentially expressed proteins (HIST1H1C, HBA1, PARK7, HMGB1, HMGB2, CLIC1, KRT7, SFN, and CDKN2A) were subjected to qRT-PCR, and two over-expressed proteins (HMGB1 and PRAK7) were subjected to the Western blot analysis, to validate the proteomic results. The results from the qRT-PCR and Western blot analysis were consistent with the findings from the proteomic analysis. Moreover, pORF5 could inhibit the TNF-α-induced apoptosis in HeLa cells. Through siRNA-mediated functional screening, the high-mobility group box 1 (HMGB1) was shown to be relevant to the inhibition of the apoptotic response in the host cells. CONCLUSION: Identification of key proteins interacting with pORF5 could contribute to the understanding and further exploration of the function of pORF5 in the pathogenic mechanisms of C. trachomatis.

15.
Pathog Dis ; 75(9)2017 12 29.
Article En | MEDLINE | ID: mdl-29040500

Chlamydia trachomatis, an obligate intracellular pathogen, has various effective strategies to regulate host cell death signalling pathways that ensure completion of their growth cycle. Mitochondrial autophagy (mitophagy) is responsible for elimination of dysfunctional and impaired mitochondria, and this process plays a critical role in cell survival via restriction of the mitochondrial apoptotic pathway. However, the specific molecular mechanisms are not entirely understood. In the present study, we observed that pORF5 plasmid protein of C. trachomatis plays a crucial role in attenuating mitochondrial dysfunction and apoptosis. Knockdown high mobility group box 1 (HMGB1) by lentivirus suppressed pORF5-induced mitophagy and increased apoptosis, implying that pORF5 may participate in cell death signalling pathways via up-regulation of HMGB1. Thus, we concluded that up-regulation of HMGB1 is a pivotal event for C. trachomatis that manipulates mitophagy and apoptosis in order to establish a favourable environment supportive of Chlamydial growth, which should further promote our understanding of Chlamydial pathogenic mechanisms.


Bacterial Proteins/metabolism , Chlamydia trachomatis/growth & development , HMGB1 Protein/biosynthesis , Host-Pathogen Interactions , Mitophagy , Plasmids , Virulence Factors/metabolism , Apoptosis , Chlamydia trachomatis/genetics , HeLa Cells , Humans
16.
FEMS Microbiol Lett ; 363(17)2016 09.
Article En | MEDLINE | ID: mdl-27421958

Chlamydial species are common intracellular parasites that cause various diseases, mainly characterized by persistent infection, which lead to inflammatory responses modulated by pattern recognition receptors (PRRs). The best understood PRRs are the extracellular Toll-like receptors, but recent significant advances have focused on two important proteins, NOD1 and NOD2, which are members of the intracellular nucleotide-binding oligomerization domain receptor family and are capable of triggering the host innate immune signaling pathways. This results in the production of pro-inflammatory cytokines, which is vital for an adequate host defense against intracellular chlamydial infection. NOD1/2 ligands are known to derive from peptidoglycan, and the latest research has resolved the paradox of whether chlamydial species possess this bacterial cell wall component; this finding is likely to promote in-depth investigations into the interaction between the NOD proteins and chlamydial pathogens. In this review, we summarize the basic characteristics and signal transduction functions of NOD1 and NOD2 and highlight the new research on the roles of NOD1 and NOD2 in the host defense against chlamydial infection.


Chlamydia Infections/immunology , Immunity, Innate , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Animals , Chlamydia/immunology , Chlamydia/pathogenicity , Chlamydia Infections/microbiology , Cytokines/metabolism , Humans , Inflammation , Mice , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/chemistry , Signal Transduction , Toll-Like Receptors
...