Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
J Clin Invest ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954588

RESUMEN

Cytomegalovirus (CMV) is one of the most common and relevant opportunistic pathogens in immunocompromised individuals such as kidney transplant recipients (KTRs). The exact mechanisms underlying the disability of cytotoxic T cells to provide sufficient protection against CMV in immunosuppressed individuals have not been identified yet. Here, we performed in-depth metabolic profiling of CMV-specific CD8+ T cells in immunocompromised patients and show the development of metabolic dysregulation at the transcriptional, protein, and functional level of CMV-specific CD8+ T cells in KTRs with non-controlled CMV infection. These dysregulations comprise impaired glycolysis and increased mitochondrial stress, which is associated with an intensified expression of the nicotinamide adenine dinucleotide nucleotidase (NADase) CD38. Inhibiting NADase activity of CD38 reinvigorated the metabolism and improved cytokine production of CMV-specific CD8+ T cells. These findings were corroborated in a mouse model of CMV infection under conditions of immunosuppression. Thus, dysregulated metabolic states of CD8+ T cells could be targeted by inhibiting CD38 to reverse hypo-responsiveness in individuals who fail to control chronic viral infection.

2.
Fitoterapia ; 177: 106104, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950637

RESUMEN

Four undescribed polyketides, beshanzones A (1) and B (2) as well as beshanhexanols A (3) and B (4), along with three known ones (5-7) were isolated from the rice fermentation of two endophytic fungi associated with the critically endangered Chinese endemic conifer Abies beshanzuensis. γ-Butyrolactone derivatives 1, 2, and 5 were isolated from Phomopsis sp. BSZ-AZ-2, an interesting strain that drawn our attention this time. The cyclohexanol derivatives 3, 4, 6, and 7 were obtained during a follow-up investigation on Penicillium commune BSZ-P-4-1. The chemical structures including absolute configurations of compounds 1-4 were determined by spectroscopic methods, Mo2(OAc)4 induced electronic circular dichroism (IECD), GIAO NMR calculations and DP4+ probability analyses. In particular, compound 2 contains a novel 5/5 bicyclic ring system, which might be biogenetically derived from the known compound 5 through hydrolysis followed by an Aldol reaction. All isolates were evaluated for their antimicrobial activities against a small panel of bacterial and fungal pathogens. Compounds 6 and 7 showed moderate inhibitory activities against Candida albicans, with MIC values of 16 and 32 µg/mL, respectively.

3.
Inorg Chem ; 63(24): 11354-11360, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842865

RESUMEN

Manipulation of multiemissive luminophores is meaningful for exploring luminescent materials. Herein, we report a soft double salt assembly strategy that could result in well-organized nanostructures and different luminescence based on multiple weak intermolecular interactions thanks to the existence of electrostatic attraction between the anionic and cationic platinum(II) complexes. The cationic complexes B1 and B2 can coassemble with anionic complex A, respectively, and the emission switches from monomeric and excimeric emission to the triplet metal-metal-to-ligand charge transfer (3MMLCT) along with morphology changes from 0-dimensional (0-D) nanospheres to 3-dimensional (3-D) nanostructures. It is demonstrated that an isodesmic growth mechanism is adopted during the spontaneous self-assembly process, and the relative negative ΔG values make the anionic and cationic complex molecules prefer to form aggregates based on π-π stacking, Pt···Pt interactions, and electrostatic interactions. The coassembly strategy between anionic and cationic complexes endows them with multicolor luminescent and apparent color as optical materials for advanced information encryption.

5.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725843

RESUMEN

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Inhibidores mTOR , Proteína Proto-Oncogénica c-ets-1 , Proteína 1A de Unión a Tacrolimus , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Ratones Desnudos , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
J Nutr ; 154(7): 2315-2325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763264

RESUMEN

BACKGROUND: Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES: This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS: White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS: Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1ß), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS: Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.


Asunto(s)
Pollos , Dieta , Selenio , Animales , Selenio/administración & dosificación , Selenio/deficiencia , Selenio/farmacología , Femenino , Dieta/veterinaria , Alimentación Animal/análisis , Enfermedades de las Aves de Corral , Inflamación/metabolismo , Miocardio/metabolismo , Miocardio/patología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Corazón/efectos de los fármacos , Suplementos Dietéticos , Selenoproteínas/metabolismo , Selenoproteínas/genética , Cardiopatías/metabolismo , Cardiopatías/etiología , Antioxidantes/metabolismo
7.
Mar Environ Res ; 197: 106487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583358

RESUMEN

Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.


Asunto(s)
Microplásticos , Plásticos , Ecosistema
8.
BMC Pediatr ; 24(1): 207, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521911

RESUMEN

BACKGROUND: Anorectal malformations (ARMs) are the most common congenital anomaly of the digestive tract. And colostomy should be performed as the first-stage procedure in neonates diagnosed with intermediate- or high-type ARMs. However, the most classic Pe˜na's colostomy still has some disadvantages such as complicated operation procedure, susceptibility to infection, a greater possibility of postoperative incision dehiscence, difficulty of nursing and large surgical trauma and incision scarring when closing the stoma. We aimed to explore the effectiveness of middle descending colon-double lumen ostomy (MDCDLO) in the treatment of high and intermediate types of anorectal malformations. METHODS: We retrospectively reviewed the data of patients who underwent MDCDLO for high or intermediate types of ARMs between June 2016 and December 2021 in our hospital. The basic characteristics were recorded. All patients were followed up monthly to determine if any complication happen. RESULTS: There were 17 boys and 6 girls diagnosed with high or intermediate types of ARMs in our hospital between June 2016 and December 2021. All 23 patients were cured without complications such as abdominal incision infection, stoma stenosis, incisional hernia, and urinary tract infection in the postoperative follow-up time of 6 months to 6 years except one case of proximal intestinal prolapse was restored under anesthesia. CONCLUSION: MDCDLO offers the advantages of simplicity, efficiency, safety, mild trauma, and small scarring in the treatment of high and intermediate types of anorectal malformations.


Asunto(s)
Malformaciones Anorrectales , Recién Nacido , Masculino , Femenino , Humanos , Malformaciones Anorrectales/cirugía , Malformaciones Anorrectales/etiología , Estudios Retrospectivos , Cicatriz/etiología , Colon Descendente , Colostomía/efectos adversos , Colostomía/métodos
9.
Toxicology ; 504: 153787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522818

RESUMEN

Cadmium (Cd) is a common heavy metal pollutant in the environment, and the widespread use of products containing Cd compounds in industry has led to excessive levels in the environment, which enter the animal body through the food chain, thus seriously affecting the reproductive development of animals. Related studies have reported that Cd severely affects spermatogonia development and spermatogenesis in animals. In contrast, the reproductive toxicity of Cd in males and its mechanism of action have not been clarified. Therefore, this paper reviewed the toxic effects of Cd on germ cells, spermatogonia somatic cells and hypothalamic-pituitary-gonadal axis (HPG axis) of male animals and its toxic action mechanisms of oxidative stress, apoptosis and autophagy from the perspectives of cytology, genetics and neuroendocrinology. The effects of Cd stress on epigenetic modification of reproductive development in male animals were also analyzed. We hope to provide a reference for the in-depth study of the toxicity of Cd on male animal reproduction.


Asunto(s)
Cadmio , Estrés Oxidativo , Reproducción , Animales , Masculino , Cadmio/toxicidad , Reproducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Espermatogénesis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Apoptosis/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos
10.
Int J Surg ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502853

RESUMEN

BACKGROUND: Factors influencing recovery after decompression surgery for cauda equina syndrome (CES) are not completely identified. We aimed to investigate the most valuable predictors (MVPs) of poor postoperative recovery (PPR) in patients with CES and construct a nomogram for discerning those who will experience PPR. METHODS: 356 patients with CES secondary to lumbar degenerative diseases treated at *** Hospital were randomly divided into training (N=238) and validation (N=118) cohorts at a 2:1 ratio. Moreover, 92 patients from the **** Hospital composed the testing cohort. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used for selecting MVPs. The nomogram was developed by integrating coefficients of MVPs in the logistic regression, and its discrimination, calibration, and clinical utility were validated in all three cohorts. RESULTS: After 3 to 5 years of follow-up, the residual rates of bladder dysfunction, bowel dysfunction, sexual dysfunction, and saddle anesthesia were 41.9%, 44.1%, 63.7%, and 29.0%, respectively. MVPs included stress urinary incontinence, overactive bladder, low stream, difficult defecation, fecal incontinence, and saddle anesthesia in order. The discriminatory ability of the nomogram was up to 0.896, 0.919, and 0.848 in the training, validation, and testing cohorts, respectively. Besides, the nomogram showed good calibration and clinical utility in all cohorts. Furthermore, the optimal cut-off value of the nomogram score for distinguishing those who will experience PPR was 148.02, above which postoperative outcomes tend to be poor. CONCLUSION: The first pre-treatment nomogram for discerning CES patients who will experience PPR was developed and validated, which will aid clinicians in clinical decision-making.

11.
Sci Total Environ ; 921: 171077, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382597

RESUMEN

Coral reefs are increasingly identified as microplastic sinks. Understanding the trapping and deposition effects on microplastics among coral colonies of different morphologies can help identify which corals and coral reefs are at higher risk of microplastic exposure. Here, we used a current-generating saltwater flume to explore microplastic trapping and deposition among branching coral, Pocillopora acuta, colonies with contrasting morphologies (open and compact), together with varying coral surface conditions (live, dead, and waxed), microplastic sizes (400 to 500 µm and 900 to 1000 µm), and seeding points (above-colony and mid-colony). Results revealed that more microplastics were trapped by, and deposited nearer to, compact colonies compared to those with a more open morphology-likely due to differences in flow dynamics. More of the larger microplastics were trapped, as were those introduced at the mid seeding point, but coral surface condition had no significant effect. These findings add to the growing evidence that corals are effective at trapping and facilitating deposition of microplastics. Branching corals with compact structures are potentially at high risk of microplastic pollution impact. We posit that coral composition, i.e. the relative abundance of compact branching colonies, will affect microplastic accumulation in natural reef environments. SYNOPSIS: This study demonstrates the effects of coral morphology on microplastic trapping and deposition, providing mechanistic insights into the factors that contribute to coral reefs acting as microplastic sinks.


Asunto(s)
Antozoos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis , Arrecifes de Coral , Ecosistema
12.
Environ Sci Technol ; 58(10): 4751-4760, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38324714

RESUMEN

Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fotólisis , Antibacterianos , Oxidantes , Farmacorresistencia Microbiana
13.
Angew Chem Int Ed Engl ; 63(16): e202400562, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382041

RESUMEN

Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all-solid-state Li-ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+-doped, cation-disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium-deficient layer featuring a rock-salt-like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high-loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide-based ASSBs at high voltages.

14.
Environ Sci Technol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319710

RESUMEN

The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.

15.
Cell Mol Immunol ; 21(4): 374-392, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383773

RESUMEN

CD4+ T cells can "help" or "license" conventional type 1 dendritic cells (cDC1s) to induce CD8+ cytotoxic T lymphocyte (CTL) anticancer responses, as proven in mouse models. We recently identified cDC1s with a transcriptomic imprint of CD4+ T-cell help, specifically in T-cell-infiltrated human cancers, and these cells were associated with a good prognosis and response to PD-1-targeting immunotherapy. Here, we delineate the mechanism of cDC1 licensing by CD4+ T cells in humans. Activated CD4+ T cells produce IFNß via the STING pathway, which promotes MHC-I antigen (cross-)presentation by cDC1s and thereby improves their ability to induce CTL anticancer responses. In cooperation with CD40 ligand (L), IFNß also optimizes the costimulatory and other functions of cDC1s required for CTL response induction. IFN-I-producing CD4+ T cells are present in diverse T-cell-infiltrated cancers and likely deliver "help" signals to CTLs locally, according to their transcriptomic profile and colocalization with "helped/licensed" cDCs and tumor-reactive CD8+ T cells. In agreement with this scenario, the presence of IFN-I-producing CD4+ T cells in the TME is associated with overall survival and the response to PD-1 checkpoint blockade in cancer patients.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Ratones , Animales , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD4-Positivos , Células Dendríticas
16.
Front Immunol ; 15: 1293618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375478

RESUMEN

Background: Colon cancer is a heterogeneous disease and consists of various molecular subtypes. Despite advances in high-throughput expression profiling, limitations remain in predicting clinical outcome and assigning specific treatment to individual cases. Tumor-immune interactions play a critical role, with tumors that activate the immune system having better outcome for the patient. The localization of T cells within tumor epithelium, to enable direct contact, is essential for antitumor function, but bulk DNA/RNA sequencing data lacks spatial distribution information. In this study, we provide spatial T cell tumor distribution and connect these data with previously determined genomic data in the AC-ICAM colon cancer patient cohort. Methods: Colon cancer patients (n=90) with transcriptome data available were selected. We used a custom multiplex immunofluorescence assay on colon tumor tissue sections for quantifying T cell subsets spatial distribution in the tumor microenvironment, in terms of cell number, location, mutual distance, and distance to tumor cells. Statistical analyses included the previously determined Immunologic Constant of Rejection (ICR) transcriptome correlation and patient survival, revealing potential prognostic value in T cell spatial distribution. Results: T cell phenotypes were characterized and CD3+CD8-FoxP3- T cells were found to be the predominant tumor-infiltrating subtype while CD3+FoxP3+ T cells and CD3+CD8+ T cells showed similar densities. Spatial distribution analysis elucidated that proliferative T cells, characterized by Ki67 expression, and Granzyme B-expressing T cells were predominantly located within the tumor epithelium. We demonstrated an increase in immune cell density and a decrease in the distance of CD3+CD8+ T cells to the nearest tumor cell, in the immune active, ICR High, immune subtypes. Higher densities of stromal CD3+FoxP3+ T cells showed enhanced survival outcomes, and patients exhibited superior clinical benefits when greater spatial distances were observed between CD3+CD8-FoxP3- or CD3+CD8+ T cells and CD3+FoxP3+ T cells. Conclusion: Our study's in-depth analysis of the spatial distribution and densities of major T cell subtypes within the tumor microenvironment has provided valuable information that paves the way for further research into the intricate relationships between immune cells and colon cancer development.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias del Colon , Humanos , Pronóstico , Subgrupos de Linfocitos T , Neoplasias del Colon/patología , Factores de Transcripción Forkhead/análisis , Microambiente Tumoral
17.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383528

RESUMEN

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína HMGA1a/genética , Resistencia a Antineoplásicos/genética , Ferroptosis/genética , Proteína HMGA1b , Línea Celular Tumoral
18.
J Hazard Mater ; 466: 133624, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295726

RESUMEN

The generation, migration and reaction paths of electrons are the key steps for photodegradation of pollutants. However, efficient operation of the above pathways is still challenging. Herein, by strong coordination and slow pyrolysis, we constructed a narrow band Zn-Mn bimetallic photoactive core-shell material (Mn@Zn-N-C, Eg = 3.38 eV) with abundant oxygen vacancies for enhancing the above electronic paths. The photodegradation experiments of tetracycline hydrochloride (TCH) showed that the formation and transfer of vacancy-induced free electrons in the synthesized Mn@Zn-N-C was the key to improve the photocatalytic activity. The DFT calculation results revealed that the photogenerated electrons can transfer along the Mn-O-Zn bridge in Mn@Zn-N-C, and promote the formation of MnIV, which directly capture the free electrons and reset itself to MnII site. In this case, the introduction of Mn would enhance the separation of h+ and e-. The adjacent vacancies and defects then also trapped the above free electrons and hinder the recombination of photogenerated carriers. Simultaneously, the localized valence electron transfer between the above redox pairs (Mn4+/Mn2+ and Zn2+/Zn0) also promoted the long-term stability of the photocatalytic process. In summary, using vacancy induction strategy to regulate the evolution of valence- and free-electrons is a promising method to improve the production-transfer-utilization efficiency of photogenerated carriers.

19.
Int Rev Cell Mol Biol ; 382: 145-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38225102

RESUMEN

Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Neoplasias/patología , Linfocitos T , Inmunidad Adaptativa , Inmunoterapia/métodos , Microambiente Tumoral
20.
Phytochemistry ; 219: 113963, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171409

RESUMEN

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Asunto(s)
Neurospora , Pseudotsuga , Tracheophyta , Xantonas , Staphylococcus aureus , Hongos , Xantonas/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...