Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7654, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561419

RESUMEN

Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Mutación
2.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493151

RESUMEN

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Angiogénesis , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular
3.
Heliyon ; 9(5): e16158, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215793

RESUMEN

Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2ß1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.

5.
Biomater Adv ; 147: 213323, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764198

RESUMEN

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Asunto(s)
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacología , Peróxidos Lipídicos/uso terapéutico , Liposomas/uso terapéutico , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
6.
Fitoterapia ; 165: 105407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36581180

RESUMEN

Six new limonoids, named hainanxylogranolides A-F (1-6), together with nineteen known ones (7-25) were isolated from the seeds of a Hainan mangrove Xylocarpus granatum. The structures of the new compounds were established by extensive NMR spectroscopic data combined with the DFT and TDDFT calculated electronic circular dichroism spectra. Hainanxylogranolide A (1) is the aromatic B-ring limonoid containing a central pyridine ring and a C-17 substituted γ(21)-hydroxybutenolide moiety. Hainanxylogranolide B (2) belongs to the small group of mexicanolides containing a C3-O-C8 bridge, whereas hainanxylogranolides C and D (3 and 4) are mexicanolides comprising a C1-O-C8 bridge. Compounds 9 and 25 posed obvious inhibition effect on the tube formation of HUVECs. There are only about 25% tube-like structures were observed at the concentration of 40.0 µM of compound 25. The antiviral activities of the isolates against herpes simplex virus-1 (HSV-1) and severe fever with thrombocytopenia syndrome virus (SFTSV) were tested in vitro. Compound 23 exhibited moderate anti-SFTSV activity with the IC50 value of 29.58 ± 0.73 µM. This is the first report of anti-angiogenic effect and anti-SFTSV activity of limonoids from the genus Xylocarpus.


Asunto(s)
Limoninas , Meliaceae , Estructura Molecular , Cristalografía por Rayos X , Antivirales/farmacología , Semillas/química , Meliaceae/química
8.
Acta Pharm Sin B ; 12(10): 3877-3890, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213531

RESUMEN

Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial-mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.

9.
Chem Biol Interact ; 362: 109998, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649461

RESUMEN

The emerging cholinergic anti-inflammatory pathway plays a key role in regulating inflammation. Steroids are known to possess remarkable anti-inflammatory activity. However, the links between steroids and the cholinergic anti-inflammatory pathway remain unidentified. In this study, eight steroids (1-8) featuring five different structural types were characterized from an endophytic fungus Aspergillus tennesseensis 1022LEF, and were subsequently evaluated for their potential role in regulating the cholinergic anti-inflammatory pathway. As a result, compound 8, with the best potency, showed remarkable anti-inflammatory activity at the nanomolar to low micromolar level. Further pharmacological study indicated that 8 notably increased α7nAchR expression and inhibited the activation of its down-stream signaling pathways. Collectively, the present study not only highlighted the potential correlation between steroids and the cholinergic anti-inflammatory pathway, but also identified 8 as a dual-functional modulator via directly inhibition to acetylcholinesterase as well as up-regulation of α7nAchR expression.


Asunto(s)
Lipopolisacáridos , Receptor Nicotínico de Acetilcolina alfa 7 , Acetilcolinesterasa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Aspergillus , Endófitos/metabolismo , Lipopolisacáridos/toxicidad , Neuroinmunomodulación , Esteroides/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Chem Biol Interact ; 361: 109966, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513012

RESUMEN

Tumor angiogenesis inhibitors such as Bevacizumab, Ramucirumab and Endostar have been applied to the therapy of non-small cell lung carcinoma (NSCLC) patients, especially for lung adenocarcinoma (LUAD). However, several safe concerns such as neutropenia, febrile neutropenia and hypertension pulmonary hemorrhage limit their further development. And they often showed poor efficacy and serious side effect for lung squamous cell carcinoma (LUSC) patient. Thus, identification of effective and safe tumor angiogenesis inhibitor for NSCLC therapy is warranted. Apigenin is a bioflavonoid with potential anti-tumor effect and perfect safety, but its effect on tumor angiogenesis and underlying mechanism are still unclear. Herein, we found that apigenin not merely suppressed endothelial cells related motilities but also reduced pericyte coverage. Further research showed that apigenin had strong suppressive activity against HIF-1α expression and its downstream VEGF-A/VEGFR2 and PDGF-BB/PDGFßR signaling pathway. Apigenin also reduced microvessel density and pericyte coverage on the xengraft model of NCI-H1299 cells, leading to suppression of tumor growth. Moreover, apigenein showed perfect anti-angiogenic effect in xengraft model of LUSC cell NCI-H1703 cells, indicating it may be developed into a potential angiogenesis inhibitor for LUSC patient. Collectively, our study provides new insights into the anti-tumor mechanism of apigenin and suggests that apigenin is a safe and effective angiogenesis inhibitor for NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Apigenina/farmacología , Apigenina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Acta Pharmacol Sin ; 43(11): 2946-2955, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35388129

RESUMEN

Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo
12.
Int J Nanomedicine ; 16: 6003-6016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511902

RESUMEN

INTRODUCTION: Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. METHODS: In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). RESULTS: DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. CONCLUSION: This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animales , Doxorrubicina/farmacología , Ferrocianuros , Ratones , Óxido Nítrico
13.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33893396

RESUMEN

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diterpenos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenantrenos/farmacología , beta Catenina/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , beta Catenina/genética
14.
J Colloid Interface Sci ; 593: 323-334, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33744541

RESUMEN

In recent years, chemodynamic therapy (CDT) has gained increasing interest in cancer treatment. In contrast to photodynamic therapy and sonodynamic therapy, extrinsic excitations such as laser or ultrasound are not required in CDT. As a result, the CDT performance is not limited by the penetration depth of the external irritation. However, CDT relies heavily on hydrogen peroxide (H2O2) in the tumour microenvironment (TME). Insufficient H2O2 in the TME limits the CDT performance, and the most reported methods to produce H2O2 in the TME are dependent on oxygen supply, which is restricted by the hypoxic TME. In this study, H2O2 self-providing copper nanodots were proposed, and the drug doxorubicin (DOX) was successfully loaded to construct DOX-nanodots. Our results showed that the nanodots produced H2O2 in the weakly acidic TME due to the peroxo group and further generated the most active hydroxyl radical (OH) through the Fenton-like reaction. This process was pH-dependent and did not occur in a neutral environment. In addition to OH, the nanodots also produced singlet oxygen (1O2) and superoxide anions (O2-) in the cancer cells. The copper nanodots performed promising CDT against breast cancer in vitro and in vivo, with enhanced cell apoptosis and decreased cell proliferation. The combination of chemotherapy and CDT using DOX-nanodots further improved the therapeutic effects. The treatments showed good biocompatibility with no obvious toxicity in major tissues, possibly due to the specific OH generation in the weakly acidic TME. In summary, the H2O2 self-providing copper nanodots in combination with DOX showed promising cancer-curing effects due to the oxygen-independent and tumour-specific production of reactive oxygen species and the cooperation of chemotherapy.


Asunto(s)
Neoplasias de la Mama , Peróxido de Hidrógeno , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Cobre , Doxorrubicina/farmacología , Femenino , Humanos , Microambiente Tumoral
15.
Dis Aquat Organ ; 142: 13-21, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150871

RESUMEN

Nocardia seriolae is the causative agent of nocardiosis in both marine and freshwater fish. Here, we report on multiple outbreaks of nocardiosis associated with elevated mortality (23-35%) in farmed largemouth bass in Sichuan, China, from 2017 to 2018. A total of 9 strains isolated from diseased largemouth bass were identified as N. seriolae by phenotypic characterization, 16S rRNA and hsp65 gene sequence analysis. The clinical signs of infected largemouth bass included hemorrhage, skin ulcers and prominent tubercles varying in size in the gill, liver, spleen and kidney. Experimental infection indicated that these isolates were the pathogens responsible for the mortalities. In vitro antibacterial activities of 12 antibiotics against N. seriolae isolates were determined as minimum inhibitory concentrations. Histopathological observation of diseased fish infected with N. seriolae showed necrotizing granulomatous hepatitis, nephritis, splenitis, epithelial hypertrophy and hyperplasia with degenerative changes of the epithelium in the gill. Large quantities of bacterial aggregates were found in the necrotic area of the granuloma by Lillie-Twort Gram stain and immunocytochemistry. Our findings indicated that N. seriolae is a serious threat to the largemouth bass Micropterus salmoides industry in Southwest China.


Asunto(s)
Lubina , Enfermedades de los Peces , Nocardia , Animales , China/epidemiología , Enfermedades de los Peces/epidemiología , Nocardia/genética , Filogenia , ARN Ribosómico 16S/genética
16.
J Cancer ; 11(21): 6348-6355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33033518

RESUMEN

Background: The natural occurring pristimerin, a quinonemethide triterpenoid, is extracted from a variety of species of the Celastraceae and Hippocrateaceae family. This research investigated the in vitro anti-cancer potential of pristimerin on NSCLC cells NCI-H1299 and elucidated the molecular mechanism. Methods: Cell growth inhibition by pristimerin was assessed using the MTT assay. Apoptosis was detected using the Annexin V/propidium iodide (PI) test. The colony forming assay was used to investigate the anti-proliferative effects of pristimerin. Wound healing assay and the transwell cell migration assay were utilized to determine the inhibitory effects of migration and invasion, respectively. Western blot was used to detect the protein expression, and real-time-quantitative (RT-q) PCR was used to analyze the mRNA expression. Results: The results showed that pristimerin inhibited the proliferation of H1299 cells with an IC50 value of 2.2 ± 0.34 µM and induced apoptosis in a dose-dependent manner. The colony formation ability was reduced in a dose-dependent manner. A marked inhibition of migration and invasion against H1299 cells was observed in a dose- or time-dependent manner. Moreover, the decreased protein levels of vimentin, F-actin, integrin ß1, matrix metalloproteinase (MMP2) and Snail revealed the potential inhibition of epithelial-to-mesenchymal transition (EMT). The regulated mRNA levels of integrin ß1, MMP2 and Snail indicated the great potential in the treatment of NSCLC. Conclusion: In conclusion, our study demonstrated that pristimerin suppressed NSCLC cells NCI-H1299 in vitro, exhibited potent activities of proliferation inhibition and apoptosis induction. Furthermore, the treatment of pristimerin decreased migration and invasion of H1299, which was correlated with EMT-related proteins and mRNA.

17.
J Nanobiotechnology ; 18(1): 146, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076924

RESUMEN

BACKGROUNDS: Surgical resection and adjunct chemotherapy or radio-therapy has been applied for the therapy of superficial malignant tumor in clinics. Whereas, there are still some problems limit its clinical use, such as severe pains and side effect. Thus, it is urgent need to develop effective, minimally invasive and low toxicity therapy stagey for superficial malignant tumor. Topical drug administration such as microneedle patches shows the advantages of reduced systemic toxicity and nimble application and, as a result, a great potential to treat superficial tumors. METHODS: In this study, microneedle (MN) patches were fabricated to deliver photosensitizer IR820 and chemotherapy agent cisplatin (CDDP) for synergistic chemo-photodynamic therapy against breast cancer. RESULTS: The MN could be completely inserted into the skin and the compounds carrying tips could be embedded within the target issue for locoregional cancer treatment. The photodynamic therapeutic effects can be precisely controlled and switched on and off on demand simply by adjusting laser. The used base material vinylpyrrolidone-vinyl acetate copolymer (PVPVA) is soluble in both ethanol and water, facilitating the load of both water-soluble and water-insoluble drugs. CONCLUSIONS: Thus, the developed MN patch offers an effective, user-friendly, controllable and low-toxicity option for patients requiring long-term and repeated cancer treatments.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/farmacología , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Quimioterapia , Femenino , Humanos , Verde de Indocianina/análogos & derivados , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/administración & dosificación , Povidona/análogos & derivados
18.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762751

RESUMEN

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Asunto(s)
Bismuto , Medios de Contraste , Tomografía Computarizada por Rayos X/métodos , Animales , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidad , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Yohexol/química , Yohexol/farmacocinética , Riñón/diagnóstico por imagen , Riñón/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribución Tisular , Imagen de Cuerpo Entero
19.
Exp Ther Med ; 19(6): 3778-3786, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32346442

RESUMEN

The primary aim of the present study was to evaluate abnormal iron distribution in specific regions of the brains in patients with Parkinson's disease (PD) using quantitative susceptibility mapping (QSM) and R2* mapping, and to compare the diagnostic performances of QSM and R2* mapping in differentiating patients with PD with that in normal controls. A total of 25 patients with idiopathic PD and 28 sex-and age-matched normal controls were included in the present study and their brains investigated using a 3T scanner. Magnetic resonance imaging techniques, namely, QSM and R2* mapping, were applied to generate susceptibility and R2* values. The differences in susceptibility and R2* values in deep grey matter nuclei between patients with PD and the normal controls were compared using independent samples t-tests. The abilities of QSM and R2* mapping to classify patients with PD and normal controls were analyzed using receiver operating characteristic curves. Correlation analyses between imaging parameters (e.g. susceptibility and R2* values) and clinical feature (disease severity assessed using the Hoehn and Yahr score) were performed. The intra-class correlation coefficient (ICC) for susceptibility (ICC=0.977; P<0.001) and R2* (ICC=0.945; P<0.001) values between two neuro-radiologists were >0.81, showing excellent inter-rater agreement. The susceptibility values were significantly increased in the substantia nigra (SN) and red nucleus, but were decreased in the putamen of patients with PD compared with that in the corresponding brain regions of normal controls. However, increased R2* values were observed only in the SN in patients with PD. QSM showed higher sensitivity and specificity compared with R2* mapping to separate the patients with PD from the normal controls. There were no significant correlations between the susceptibility/R2* values and clinical features in all targeted regions of the brains in patients with PD. In conclusion, both QSM and R2* mapping are feasible to calculate the iron levels in human brains, and QSM provides a more sensitive and accurate method to assess regional abnormal iron distribution in patients with PD.

20.
Mater Sci Eng C Mater Biol Appl ; 111: 110836, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279765

RESUMEN

Solid dispersion is a widely used method to improve the dissolution and oral bioavailability of water-insoluble drugs. However, due to the strong hydrophobicity, the drug crystallization in the release media after drug dissolution and the resulted decreased drug absorption retards the use of solid dispersions. It is widely known that the amphiphilic copolymer can encapsulate the hydrophobic compounds and help form stable nano-dispersions in water. Inspired by this, we tried to formulate the solid dispersion of nimodipine by using amphipathic copolymer as one of the carriers. Concerning the solid dispersions, there are many important points involved in these formulations, such as the miscibility between the drug and the carriers, the storage stability of solid dispersions, the dissolution enhancement and so on. In this study, a systemic method is proposed. In details, the supersaturation test and the glass transition temperature (Tg) measurement to predict the crystallization inhibition, the ratios of different components and the storage stability, the interactions among the components were investigated in detail by nuclear magnetic resonance (1H NMR) and isothermal titration calorimetry (ITC) and, the final dissolution and oral bioavailability enhancement. It was found that the amphiphilic copolymer used in the solid dispersion encouraged the formation the drug loading micelles in the release media and, finally, the problem of drug crystallization in the dissolution process was successfully solved.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Nanopartículas/química , Nimodipina/farmacología , Tensoactivos/química , Administración Oral , Animales , Células CACO-2 , Cristalización , Composición de Medicamentos , Endocitosis , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Ratones , Micelas , Nanopartículas/ultraestructura , Nimodipina/administración & dosificación , Nimodipina/sangre , Nimodipina/farmacocinética , Polietilenglicoles/química , Polivinilos/química , Povidona/análogos & derivados , Povidona/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...