Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135192, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39002479

RESUMEN

Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.


Asunto(s)
Lagos , Microplásticos , Turismo , Contaminantes Químicos del Agua , Lagos/microbiología , Microplásticos/toxicidad , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Microbiota/efectos de los fármacos , Farmacorresistencia Microbiana/genética
2.
Sci Total Environ ; 878: 163171, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001675

RESUMEN

Ecosystem succession and pedogenesis reshuffle the composition and turnover of dissolved organic matter (DOM) and its interactions with soil microbiome. The changes of these connections are especially intensive during initial pedogenesis, e.g. in young post-glacial areas. The temporal succession and vertical development of DOM effects on microbial community structure remains elusive. Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS), high-throughput sequencing, and molecular ecological networks, we characterized the molecular diversity of water-extractable DOM and identified its links to microbial communities in soil profiles along deglaciation chronosequence (12, 30, 40, 52, 80, and 120 years) in the southeastern Tibetan Plateau. Low-molecular-weight compound content decreased, whereas the mid- and high-molecular-weight compounds increased with succession age and soil depth. This was confirmed by the increase in double bond equivalents and averaged oxygen-to­carbon ratios (O/C), and decrease in hydrogen-to­carbon ratios (H/C), which reflect DOM accumulation and stabilization. Microbial community succession shifted towards the dominance of oligotrophic Acidobacteria and saprophytic Mortierellomycota, reflecting the increase of stable DOM components (H/C < 1.5 and wider O/C). Less DOM-bacterial positive networks during the succession reduced specialization of labile DOM production (such as lipid- and protein-like compounds), whereas more DOM-fungal negative networks increased specialization of stable DOM decomposition (such as tannin- and condensed aromatic-like compounds). Consequently, DOM stability is not intrinsic during initial pedogenesis: stable DOM compounds remain after fast bacterial utilization of labile DOM compounds, whereas fungi decompose slowly the remaining DOM pools.


Asunto(s)
Microbiota , Suelo , Suelo/química , Materia Orgánica Disuelta , Espectrometría de Masas , Carbono
3.
Plants (Basel) ; 12(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36840185

RESUMEN

Plant nitrogen (N) uptake preference is a key factor affecting plant nutrient acquisition, vegetation composition and ecosystem function. However, few studies have investigated the contribution of different N sources to plant N strategies, especially during the process of primary succession of a glacial retreat area. By measuring the natural abundance of N isotopes (δ15N) of dominant plants and soil, we estimated the relative contribution of different N forms (ammonium-NH4+, nitrate-NO3- and soluble organic N-DON) and absorption preferences of nine dominant plants of three stages (12, 40 and 120 years old) of the Hailuogou glacier retreat area. Along with the chronosequence of primary succession, dominant plants preferred to absorb NO3- in the early (73.5%) and middle (46.5%) stages. At the late stage, soil NH4+ contributed more than 60.0%, In addition, the contribution of DON to the total N uptake of plants was nearly 19.4%. Thus, the dominant plants' preference for NO3- in the first two stages changes to NH4+ in the late stages during primary succession. The contribution of DON to the N source of dominant plants should not be ignored. It suggests that the shift of N uptake preference of dominant plants may reflect the adjustment of their N acquisition strategy, in response to the changes in their physiological traits and soil nutrient conditions. Better knowledge of plant preferences for different N forms could significantly improve our understanding on the potential feedbacks of plant N acquisition strategies to environmental changes, and provide valuable suggestions for the sustainable management of plantations during different successional stages.

4.
Sci Total Environ ; 873: 162393, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841408

RESUMEN

Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.


Asunto(s)
Microbiota , Micorrizas , Suelo , Microbiología del Suelo , Plantas/microbiología , Interacciones Microbianas
5.
Environ Sci Pollut Res Int ; 30(8): 20923-20933, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264468

RESUMEN

Strontium (Sr2+) pollution and its biological effects are of great concern including photosynthetic regulation, which is fundamental to environmental responses, especially for bryophytes during their terrestrial adaptation. Alternative electron flows mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) in photosystem I (PSI) are crucial to abiotic stresses moss responses; however, little is known about the moss photosynthesis regulation under nuclide treatment. We measured chlorophyll fluorescence parameters in PSI, photosystem II (PSII) and the P700 redox state, oxidative stress in the moss Racomitrium japonicum under low (5 mg/L), moderate (50 mg/L) and high (500 mg/L) Sr2+ stress level. Moderate and high Sr2+ stress triggered H2O2 and malondialdehyde (MDA) generation, and catalase (CAT) activity increases, which are involved in reactive oxygen species regulation. The significant PSII photochemistry (Fv/Fm), Chla/chlb, Y(I)/Y(II), Y(NA), Y(ND) and ETRI-ETRII decreases at moderate and high Sr2+, and the Y(I), Y(II) decreases at high Sr2+ revealed the photo-inhibition and photo-damage in PSI and PSII by moderate and high Sr2+ stress. The nonphotochemical quenching (NPQ) increased significantly at moderate and high Sr2+ stress, reflecting a heat-dissipation-related photo-protective mechanism in antenna system and reaction centers. Moreover, rapid re-oxidation of P700 indicated that FLV-dependent flows significantly regulated PSI redox state under moderate and high Sr2+ stress. and CEF upregulation was found at low Sr2+. Finally, photosynthetic acclimation to Sr2+ stress in R. japonicum was linked to FLVs and CEF adjustments.


Asunto(s)
Clorofila , Peróxido de Hidrógeno , Clorofila/metabolismo , Transporte de Electrón , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Bryopsida/metabolismo
6.
Plant Sci ; 323: 111379, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35850284

RESUMEN

Photosynthesis regulation is fundamental for the response to environmental dynamics, especially for bryophytes during their adaptation to terrestrial life. Alternative electron flow mediated by flavodiiron proteins (FLV) and cyclic electron flow (CEF) around photosystem I (PSI) play seminal roles in the response to abiotic stresses in mosses; nevertheless, their correlation and relative contribution to photoprotection of mosses exposed to combined stresses remain unclear. In the present study, the photosynthetic performance and recovery capacity of three moss species from different growth habitats were examined during heat and dehydration with fluctuating light. Our results showed that dehydration at 22 °C for 24 h caused little photodamage, and most of the parameters recovered to their original values after rehydration. In contrast, dehydration at 38 °C caused drastic injuries, especially to PSII, which was mainly caused by the inactivation of non-photochemical quenching (NPQ). Dehydration also induced a high accumulation of O2- and H2O2. A consistently higher CEF as well as a positive correlation between CEF and FLV was observed in resistant R. japonicum, implying CEF played a more important protective role for R. japonicum. In H. plumaeforme and P. cuspidatum, the positive relationship under mild stress switched to negative when stress became severe. Therefore, FLV pathway was sensitive to environmental fluctuations and maybe less efficient than CEF thus, readily to be lost during land colonization and evolution in angiosperms. Our work provides insights into the coordination of various pathways to fine-tune photosynthetic protection and can be used as a basis for species screening and development of breeding strategies for degraded ecosystem restoration with pioneering mosses.


Asunto(s)
Briófitas , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Deshidratación/metabolismo , Ecosistema , Transporte de Electrón/fisiología , Calor , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fitomejoramiento , Hojas de la Planta/metabolismo , Temperatura
7.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1074-1082, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35543062

RESUMEN

Dissolved organic matter (DOM), the most active type of soil organic matter, plays a key role in soil biogeochemical cycling. Therefore, exploring the source, composition, environmental response, and accumulation mechanism of DOM during vegetation succession has great significance for predicting soil carbon cycling. In this study, DOM was extracted from topsoil and subsoil at plots after 12, 30, 40, 50, 80, and 120 years of primary succession along the Hailuogou Glacier retreat area. The concentrations and spectral characteristics of DOM were analyzed via a combination of elemental analysis, ultraviolet-visible spectroscopy, and three-dimensional fluorescence excitation-emission matrix spectroscopy. The results showed that concentrations of soil dissolved organic carbon and dissolved organic nitrogen of both topsoil and subsoil increased significantly during vegetation succession. Along the chronosequence, the protein-like components and optical indices were significantly enhanced, humic-like components and the optical indices decreased, the aromaticity degree of DOM increased first and then decreased. Soil pH and NH4+-N content explained 62.2% of the total variation of surface soil DOM components, while soil moisture and pH explained 64.3% of that of subsurface soil DOM, indicating that environmental conditions were key factors affecting the concentrations and composition of soil DOM in the Hailuogou Glacier retreat area.


Asunto(s)
Materia Orgánica Disuelta , Cubierta de Hielo , Sustancias Húmicas/análisis , Suelo/química , Espectrometría de Fluorescencia
8.
Sci Total Environ ; 806(Pt 3): 151203, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710420

RESUMEN

Exotic plant invasion is an urgent issue occurring in the biosphere, which can be stimulated by environmental nitrogen (N) loading. However, the allocation and assimilation of soil N sources between leaves and roots remain unclear for plants in invaded ecosystems, which hampers the understanding of mechanisms behind the expansion of invasive plants and the co-existence of native plants. This work established a new framework to use N concentrations and isotopes of soils, roots, and leaves to quantitatively decipher intra-plant N allocation and assimilation among plant species under no invasion and under the invasion of Chromolaena odorata and Ageratina adenophora in a tropical ecosystem of SW China. We found that the assimilation of N derived from both soil ammonium (NH4+) and nitrate (NO3-) were higher in leaves than in roots for invasive plants, leading to higher leaf N levels than native plants. Compared with the same species under no invasion, most native plants under invasion showed higher N concentrations and NH4+ assimilations in both leaves and roots, and increases in leaf N were higher than in root N for native plants under invasion. These results inform that preferential N allocation, dominated by NH4+-derived N, to leaves over roots as an important N-use strategy for plant invasion and co-existence in the studied tropical ecosystem.


Asunto(s)
Ecosistema , Nitrógeno , Isótopos , Nitrógeno/análisis , Hojas de la Planta/química , Raíces de Plantas/química , Suelo
9.
Plant Sci ; 311: 111020, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482921

RESUMEN

Under natural field conditions, mosses experience fluctuating light intensities combined with temperature stress. Alternative electron flow mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) around photosystem I (PSI) allow mosses to growth under fluctuating light conditions. However, little is known about the roles of FLVs and CEF in the regulation of photosynthesis under temperature stress combined with fluctuating light. Here, we measured chlorophyll fluorescence and P700 redox state under fluctuating light conditions at 4 °C, 20 °C, and 35 °C in three mosses with different light requirements. Upon a sudden increase in light intensity, electron flow from photosystem II initially increased and then gradually decreased at 20 °C and 35 °C, indicating that the operation of FLV-dependent flow lasted much longer than previously thought. Furthermore, the absolute rates of FLV-dependent flow and CEF were enhanced under fluctuating light at 35 °C, pointing to their important roles in photoprotection when exposed to fluctuating light at moderate high temperature. Furthermore, the downregulation of FLV activity at 4 °C was partially compensated for by enhanced CEF activity. These results suggested the subtle coordination between FLV activity and CEF under fluctuating light and temperature stress. Racomitrium japonicum and Hypnum plumaeforme, which usually grow under relatively high light levels, exhibited higher FLV activity and CEF than the shade-grown moss Plagiomnium ellipticum. Based on our results, we conclude that photosynthetic acclimation to fluctuating light and temperature stress in different mosses is largely linked to the adjustment of FLV activity and CEF.


Asunto(s)
Adaptación Ocular/fisiología , Adaptación Fisiológica , Briófitas/genética , Briófitas/fisiología , Frío , Calor , Fotosíntesis/fisiología , Variación Genética , Genotipo
10.
Ecol Evol ; 10(3): 1252-1263, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076511

RESUMEN

The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.

11.
J Proteomics ; 178: 123-127, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29175092

RESUMEN

In most forest soils, the availability of nitrogen (N) and phosphorus (P) nutrients is low and unable to meet the requirement of tree growth. In the past decades, sex-based differences in poplar have been investigated in morphology and physiology. Proteomic techniques provide new insights into sex-specific differences at the molecular level. This review gives a comparative overview of the effects of N and P deficiencies on poplar physiological and proteomic characteristics. Male poplars are more efficient at photosynthesis and nutrient usage than females. Proteins related to carbohydrate metabolism, defence responses and transcription and translation processes are changed to adapt diversely in males and females. These results provide evidence that male poplar have better resistance to nutrient-limiting conditions than females, which may be reasonable for the male-biased sex ratio in nutrient-deficient habitats. Furthermore, this review also discusses the potential growth-defence trade-offs in male and female poplar coping with nutrient limitations. BIOLOGICAL SIGNIFICANCE: In the past decades, the physiological and molecular responses of individual trees exposed to nutrient deficiency have been well studied. An important model woody plant, Populus, is dioecious and shows a male-biased sex ratio in nutrient-deficient habitats. Individually, different responses to nutrient limitation between the sexes determine the bias of population sex ratios. Proteomic techniques provide new insights into sex-based differences in the molecular mechanisms underlying nutrient deficiency. This review gives a comparative overview of the identification of nitrogen and phosphorus deficiency effects on physiological and proteomic characteristics. Male poplars are more resistant and have a smaller range of protein changes than females in response to N and P deficiency, which explains the observed male-biased sex ratios to a certain extent. Furthermore, this review also discusses the possible growth-defense trade-offs in male and female poplars coping with nutrient deficiency.


Asunto(s)
Nitrógeno/deficiencia , Fósforo/deficiencia , Proteínas de Plantas/metabolismo , Populus/fisiología , Factores Sexuales , Adaptación Fisiológica , Nutrientes/deficiencia , Proteómica/métodos , Estrés Fisiológico
12.
Tree Physiol ; 37(11): 1503-1514, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985430

RESUMEN

The sex ratios of co-existing Populus and Salix vary depending on altitude and species: 1:1 equlibrium sex ratios are observed at mid-altitude but skewed ones at high altitudes, where Populus shows male-biased and Salix female-biased sex ratios. However, the underlying ecological mechanisms are poorly known. Reproductive investments of Populus purdomii Rehd. and Salix magnifica Hemsl. were assessed at altitudes of 2000 and 2600 m in the Gongga Mountain by different metrics, including biomass, carbon (C), nitrogen (N) and phosphorus (P) concentrations and construction cost, and by estimating the payback time that combines energy gain and associated costs. Reproductive investment measured as C, N and P concentrations, and construction cost was higher in P. purdomii females at 2600 m. However, in S. magnifica, no difference was observed for biomass, C and N at 2600 m, but the investments for P and construction cost were even greater in males. The payback time showed no significant differences for the sexes at 2000 m, but it was shorter for P. purdomii males and S. magnifica females at 2600 m. We concluded that nutrient- and construction cost-based estimates of reproductive allocation can provide more informative insight into the cost of reproduction than does biomass, and together with the payback time they can supply an explanation for divergent sex ratios in Populus and Salix. Consequently, our results improve our understanding of the causes and consequences of sexual dimorphism in dioecious species.


Asunto(s)
Biomasa , Populus/fisiología , Salix/fisiología , Altitud , China , Flores/química , Flores/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Reproducción , Salix/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Simpatría
13.
Tree Physiol ; 37(6): 799-814, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338926

RESUMEN

In this study, intra- and interspecific competition were investigated in early successional Salix rehderiana Schneider and later-appearing Populus purdomii Rehder under non-fertilized (control) and nitrogen (N)-fertilized conditions in the Hailuogou glacier retreat area. Our aim was to discover whether N is a key factor in plant-plant competition and whether N drives the primary succession process in a glacier retreat area. We analyzed differences in responses to intra- and interspecific competition and N fertilization between P. purdomii and S. rehderiana, including parameters such as biomass accumulation, nutrient absorption, non-structural carbohydrates, photosynthetic capacity, hydrolysable amino acids and leaf ultrastructure. In the control treatments, S. rehderiana individuals subjected to interspecific competition benefited from the presence of P. purdomii plants, as indicated by higher levels of biomass accumulation, photosynthetic capacity, N absorption, amino acid contents and photosynthetic N-use efficiency. However, in the N-fertilized treatments, P. purdomii individuals exposed to interspecific competition benefited from the presence of S. rehderiana plants, as shown by a higher growth rate, enhanced carbon gain capacity, greater amino acid contents, and elevated water-use efficiency, whereas the growth of S. rehderiana was significantly reduced. Our results demonstrate that N plays a pivotal role in determining the asymmetric competition pattern among Salicaceae species during primary succession. We argue that the interactive effects of plant-plant competition and N availability are key mechanisms that drive primary succession in the Gongga Mountain glacier retreat area.


Asunto(s)
Nitrógeno/fisiología , Populus/fisiología , Salix/fisiología , China , Cubierta de Hielo , Fotosíntesis
14.
Physiol Plant ; 159(1): 30-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27300648

RESUMEN

An interesting ecological and evolutionary puzzle arises from the observations of male-biased sex ratios in genus Populus, whereas in the taxonomically related Salix, females are generally more dominant. In the present study, we combined results from a field investigation into the sex ratios of the Salicaceous species along an altitudinal gradient on Gongga Mountain, and a pot experiment by monitoring growth and energy utilization properties to elucidate the mechanisms governing sexual dimorphism. At middle altitudes 2000 and 2300 m, the sex ratios were consistent with a 1:1 equilibrium in sympatric Populus purdomii and Salix magnifica. However, at the lower and higher ends of the altitudinal gradient, skewed sex ratios were observed. For example, the male:female ratios were 1.33 and 2.36 in P. purdomii at 1700 and 2600 m respectively; for S. magnifica the ratio was 0.62 at 2600 m. At 2300 m, the pot-grown seedlings of both species exhibited the highest biomass accumulation and total leaf area, simultaneously with the balanced sex ratios in the field. At 3300 m, the specific leaf area in male P. purdomii was 23.9% higher than that of females, which may be the morphological cause for the observed 19.3% higher nitrogen allocation to Rubisco, and 20.6% lower allocation to cell walls. As such, male P. purdomii showed a 32.9% higher foliar photosynthetic capacity, concomitant with a 12.0% lower construction cost. These properties resulted in higher photosynthetic nitrogen- and energy-use efficiencies, and shorter payback time (24.4 vs 40.1 days), the time span that a leaf must photosynthesize to amortize the carbon investment. Our results thus suggested that male P. purdomii evolved a quicker energy-return strategy. Consequently, these superior energy gain-cost related traits and the higher total leaf area contributed to the higher growth rate and tolerance in stress-prone environments, which might, in part, shed new light on the male-biased sex ratios in Populus. However, no significant sexual difference was observed in S. magnifica for all the above parameters, thereby implying that the female-biased sex ratios in Salix cannot be explained in terms of the energy-use properties studied here.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Populus/fisiología , Salicaceae/fisiología , Salix/fisiología , Altitud , Biomasa , Metabolismo Energético , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Populus/crecimiento & desarrollo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Salicaceae/crecimiento & desarrollo , Salix/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/fisiología
15.
Front Plant Sci ; 7: 1064, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27489556

RESUMEN

Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification.

16.
J Proteome Res ; 15(3): 840-50, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26842668

RESUMEN

Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.


Asunto(s)
Deficiencias de Hierro , Populus/fisiología , Proteómica , Metabolismo Energético , Oxidación-Reducción , Fotosíntesis , Proteínas de Plantas/análisis , Populus/crecimiento & desarrollo , Populus/metabolismo , Estrés Fisiológico
17.
New Phytol ; 205(3): 1350-1359, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367824

RESUMEN

The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments in order to test the EICA hypothesis, and two laboratory experiments in order to test the NWH. In common conditions, C. odorata plants from the nonnative range were better competitors but not larger than plants from the native range, either with or without the experimental manipulation of consumers. Chromolaena odorata plants from the nonnative range were more poorly defended against aboveground herbivores but better defended against soil-borne enemies. Chromolaena odorata plants from the nonnative range produced more odoratin (Eupatorium) (a unique compound of C. odorata with both allelopathic and defensive activities) and elicited stronger allelopathic effects on species native to China, the nonnative range of the invader, than on natives of Mexico, the native range of the invader. Our results suggest that invasive plants may evolve increased competitive ability after being introduced by increasing the production of novel allelochemicals, potentially in response to naïve competitors and new enemy regimes.


Asunto(s)
Alelopatía , Evolución Biológica , Chromolaena/fisiología , Especies Introducidas , Modelos Biológicos , Clima Tropical , Biomasa , Chromolaena/crecimiento & desarrollo , Geografía , Sesquiterpenos/análisis , Sesquiterpenos/química
18.
Oecologia ; 174(4): 1205-14, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24326694

RESUMEN

Invasive plants generally escape from specialist herbivores of their native ranges but may experience serious damage from generalists. As a result, invasive plants may evolve increased resistance to generalists and tolerance to damage. To test these hypotheses, we carried out a common garden experiment comparing 15 invasive populations with 13 native populations of Chromolaena odorata, including putative source populations identified with molecular methods and binary choice feeding experiments using three generalist herbivores. Plants from invasive populations of C. odorata had both higher resistance to three generalists and higher tolerance to simulated herbivory (shoot removal) than plants from native populations. The higher resistance of plants from invasive populations was associated with higher leaf C content and densities of leaf trichomes and glandular scales, and lower leaf N and water contents. Growth costs were detected for tolerance but not for resistance, and plants from invasive populations of C. odorata showed lower growth costs of tolerance. Our results suggest that invasive plants may evolve to increase both resistance to generalists and tolerance to damage in introduced ranges, especially when the defense traits have low or no fitness costs. Greater defenses in invasive populations may facilitate invasion by C. odorata by reducing generalist impacts and increasing compensatory growth after damage has occurred.


Asunto(s)
Asteraceae/fisiología , Evolución Biológica , Herbivoria , Especies Introducidas , Animales , Asteraceae/genética , Hojas de la Planta/fisiología
19.
Planta ; 236(4): 1205-13, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22684510

RESUMEN

Global environmental change and ongoing biological invasions are the two prominent ecological issues threatening biodiversity worldwide, and investigations of their interaction will aid to predict plant invasions and inform better management strategies in the future. In this study, invasive Eupatorium adenophorum and native congener E. stoechadosmum were compared at ambient and elevated atmospheric carbon dioxide (CO(2)) concentrations combined with three levels of nitrogen (N; reduced, control and increased) in terms of growth, energy gain, and cost. Compared with E. stoechadosmum, E. adenophorum adopted a quicker-return energy-use strategy, i.e. higher photosynthetic energy-use efficiency and shorter payback time. Lower leaf mass per area may be a pivotal trait for the invader, which contributed to an increased N allocation to Rubisco at the expense of cell walls and therefore to higher photosynthetic energy gain. CO(2) enrichment and N deposition synergistically promoted plant growth and influenced some related ecophysiological traits, and the synergistic effects were greater for the invader than for the native congener. Reducing N availability by applying sugar eliminated the advantages of the invader over its native congener at both CO(2) levels. Our results indicate that CO(2) enrichment and N deposition may exacerbate E. adenophorum's invasion in the future, and manipulating environmental resources such as N availability may be a feasible tool for managing invasion impacts of E. adenophorum.


Asunto(s)
Ageratina/efectos de los fármacos , Dióxido de Carbono/farmacología , Eupatorium/efectos de los fármacos , Nitrógeno/farmacología , Fotosíntesis/efectos de los fármacos , Ageratina/crecimiento & desarrollo , Ageratina/fisiología , Biomasa , Pared Celular/metabolismo , China , Ecología , Eupatorium/crecimiento & desarrollo , Eupatorium/fisiología , Especies Introducidas , Modelos Teóricos , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología
20.
J Plant Physiol ; 169(9): 884-91, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22472074

RESUMEN

To explore the traits contributing to invasiveness of Eupatorium adenophorum and to test the relationship between plasticity of these traits and invasiveness, we compared E. adenophorum with its two native congeners at four irradiances (10%, 23%, 40%, and 100%). The invader showed constantly higher performance (relative growth rate and total biomass) across irradiances than its native congeners. Higher light-saturated photosynthetic rate (P(max)), respiration efficiency (RE), and nitrogen (PNUE) and water (WUE, at 40% and 100% irradiances only) use efficiencies contributed directly to the higher performance of the invader. Higher nitrogen allocation to, stomatal conductance, and the higher contents of leaf nitrogen and pigments contributed to the higher performance of the invader indirectly through increasing P(max), RE, PNUE and WUE. The invader had consistently higher plasticity only in carotenoid content than its native congeners in ranges of low (10-40%), high (40-100%) and total (10-100%) irradiances, contributing to invasion success in high irradiance by photo protection. In the range of low irradiances, the invader had higher plasticity in some physiological traits (leaf nitrogen content, nitrogen contents in bioenergetics, carboxylation and in light-harvesting components, and contents of leaf chlorophylls and carotenoids) but not in performance, while in the ranges of high or total irradiances, the invader did not show higher plasticity in any variable (except Car). The results indicated that the relationship between invasiveness and plasticity of a specific trait was complex, and that a universal generalization about the relationship might be too simplistic.


Asunto(s)
Ageratina/crecimiento & desarrollo , Ageratina/efectos de la radiación , Eupatorium/crecimiento & desarrollo , Eupatorium/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Luz Solar , Adaptación Fisiológica , Carotenoides/metabolismo , Respiración de la Célula/efectos de la radiación , Clorofila/metabolismo , Especies Introducidas , Nitrógeno/metabolismo , Fotosíntesis/efectos de la radiación , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA