Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Phys Rev Lett ; 129(21): 213202, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36461977

The control of low-energy electrons by carrier-envelope-phase-stable near-single-cycle THz pulses is demonstrated. A femtosecond laser pulse is used to create a temporally localized wave packet through multiphoton absorption at a well defined phase of a synchronized THz field. By recording the photoelectron momentum distributions as a function of the time delay, we observe signatures of various regimes of dynamics, ranging from recollision-free acceleration to coherent electron-ion scattering induced by the THz field. The measurements are confirmed by three-dimensional time-dependent Schrödinger equation simulations. A classical trajectory model allows us to identify scattering phenomena analogous to strong-field photoelectron holography and high-order above-threshold ionization.

2.
Phys Rev Lett ; 128(3): 030401, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35119895

If the time evolution of a quantum state leads back to the initial state, a geometric phase is accumulated that is known as the Berry phase for adiabatic evolution or as the Aharonov-Anandan (AA) phase for nonadiabatic evolution. We evaluate these geometric phases using Floquet theory for systems in time-dependent external fields with a focus on paths leading through a degeneracy of the eigenenergies. Contrary to expectations, the low-frequency limits of the two phases do not always coincide. This happens as the degeneracy leads to a slow convergence of the quantum states to adiabaticity, resulting in a nonzero finite or divergent contribution to the AA phase. Steering the system adiabatically through a degeneracy provides control over the geometric phase as it can cause a π shift of the Berry phase. On the other hand, we revisit an example of degeneracy crossing proposed by AA. We find that, at suitable driving frequencies, both geometric-phase definitions give the same result and the dynamical phase is zero due to the symmetry of time evolution about the point of degeneracy, providing an advantageous setup for manipulation of quantum states.

3.
Phys Rev Lett ; 128(2): 023201, 2022 Jan 14.
Article En | MEDLINE | ID: mdl-35089761

We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the 2U_{p} classical cutoff is found to be vastly different from that below this cutoff, where U_{p} is the ponderomotive potential of the driving laser field. A local minimum structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schrödinger equation simulations for different model potentials. Our work paves the way toward understanding the physics of extreme light-matter interactions at long wavelengths and high electron kinetic energies.

4.
Phys Rev Lett ; 127(4): 043202, 2021 Jul 23.
Article En | MEDLINE | ID: mdl-34355921

The vibrational motion of molecules represents a fundamental example of an anharmonic oscillator. Using a prototype molecular system, HeH^{+}, we demonstrate that appropriate laser pulses make it possible to drive the nuclear motion in the anharmonic potential of the electronic ground state, increasing its energy above the potential barrier and facilitating dissociation by purely vibrational excitation. We find excellent agreement between the frequency-dependent response of the helium hydride molecular cation to both classical and quantum mechanical simulations, thus removing any ambiguities through electronic excitation. Our results provide access to the rich dynamics of anharmonic quantum oscillator systems and pave the way to state-selective control schemes in ground-state chemistry by the adequate choice of the laser parameters.

5.
Phys Rev Lett ; 125(7): 073202, 2020 Aug 14.
Article En | MEDLINE | ID: mdl-32857561

Interaction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol. We show that the light-field-induced momentum transfer is remarkably sensitive to properties of the ultrashort laser pulse such as its carrier-envelope phase and ellipticity. Moreover, we show that the subcycle-resolved linear momentum transfer can provide novel insights into the interplay between nonadiabatic and nondipole effects in strong-field ionization. This work paves the way towards the investigation of the so-far unexplored time-resolved nondipole nonadiabatic tunneling dynamics.

6.
Phys Rev Lett ; 124(15): 153202, 2020 Apr 17.
Article En | MEDLINE | ID: mdl-32357055

Ionization of atoms by strong laser fields produces photoelectron momentum distributions that exhibit modulations due to the interference of outgoing electron trajectories. For a faithful modeling, it is essential to include previously overlooked phase shifts occurring when trajectories pass through focal points. Such phase shifts are known as Gouy's phase anomaly in optics or as Maslov phases in semiclassical theory. Because of Coulomb focusing in three dimensions, one out of two trajectories in photoelectron holography goes through a focal point as it crosses the symmetry axis in momentum space. In addition, there exist observable Maslov phases already in two dimensions. Clustering algorithms enable us to implement a semiclassical model with the correct preexponential factor that affects both the weight and the phase of each trajectory. We also derive a simple rule to relate two-dimensional and three-dimensional models for linear polarization. It explains the shifted interference fringes and weaker high-energy yield in three dimensions. The results are in excellent agreement with solutions of the time-dependent Schrödinger equation.

7.
Phys Rev Lett ; 124(4): 043202, 2020 Jan 31.
Article En | MEDLINE | ID: mdl-32058760

Streaking with a weak probe field is applied to ionization in a two-dimensional strong field tailored to mimic linear polarization, but without disturbance by recollision or intracycle interference. This facilitates the observation of electron-momentum-resolved times of ionization with few-attosecond precision, as demonstrated by simulations for a model helium atom. Aligning the probe field along the ionizing field provides meaningful ionization times in agreement with the attoclock concept that ionization at maximum field corresponds to the peak of the momentum distribution, which is shifted due to the Coulomb force on the outgoing electron. In contrast, this attoclock shift is invisible in orthogonal streaking. Even without a probe field, streaking happens naturally along the laser propagation direction due to the laser magnetic field. As with an orthogonal probe field, the attoclock shift is not accessible by the magnetic-field scheme. For a polar molecule, the attoclock shift depends on orientation, but this does not imply an orientation dependence in ionization time.

8.
Phys Rev Lett ; 122(19): 193901, 2019 May 17.
Article En | MEDLINE | ID: mdl-31144916

We revisit the mechanism of high-harmonic generation (HHG) from solids by comparing HHG in laser fields with different ellipticities but a constant maximum amplitude. It is shown that the cutoff of HHG is strongly extended in a circularly polarized field. Moreover, the harmonic yield with large ellipticity is comparable to or even higher than that in the linearly polarized field. To understand the underlying physics, we develop a reciprocal-space-trajectory method, which explains HHG in solids by a trajectory ensemble from different ionization times and different initial states in the reciprocal space. We show that the cutoff extension is related to an additional preacceleration step prior to ionization, which has been overlooked in solids. By analyzing the trajectories and the time-frequency spectrogram, we show that the HHG in solids cannot be interpreted in terms of the classical recollision picture alone. Instead, the radiation should be described by the electron-hole interband polarization, which leads to the unusual ellipticity dependence. We propose a new four-step model to understand the mechanism of HHG in solids.

9.
Nat Commun ; 10(1): 1, 2019 01 02.
Article En | MEDLINE | ID: mdl-30602773

Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

10.
Phys Rev Lett ; 121(7): 073203, 2018 Aug 17.
Article En | MEDLINE | ID: mdl-30169106

The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH^{+} are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of strong-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization, and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal. The dynamics of this extremely asymmetric molecule contrast the well-known symmetric systems leading to a more general picture of strong-field molecular dynamics and facilitating interpolation to systems between the two extreme cases.

11.
Phys Rev Lett ; 119(20): 203201, 2017 Nov 17.
Article En | MEDLINE | ID: mdl-29219334

High-harmonic spectroscopy driven by circularly polarized laser pulses and their counterrotating second harmonic is a new branch of attosecond science which currently lacks quantitative interpretations. We extend this technique to the midinfrared regime and record detailed high-harmonic spectra of several rare-gas atoms. These results are compared with the solution of the Schrödinger equation in three dimensions and calculations based on the strong-field approximation that incorporate accurate scattering-wave recombination matrix elements. A quantum-orbit analysis of these results provides a transparent interpretation of the measured intensity ratios of symmetry-allowed neighboring harmonics in terms of (i) a set of propensity rules related to the angular momentum of the atomic orbitals, (ii) atom-specific matrix elements related to their electronic structure, and (iii) the interference of the emissions associated with electrons in orbitals corotating or counterrotating with the laser fields. These results provide the foundation for a quantitative understanding of bicircular high-harmonic spectroscopy.

12.
Phys Rev Lett ; 119(3): 033201, 2017 Jul 21.
Article En | MEDLINE | ID: mdl-28777593

We report attosecond-scale probing of the laser-induced dynamics in molecules. We apply the method of high-harmonic spectroscopy, where laser-driven recolliding electrons on various trajectories record the motion of their parent ion. Based on the transient phase-matching mechanism of high-order harmonic generation, short and long trajectories contributing to the same harmonic order are distinguishable in both the spatial and frequency domains, giving rise to a one-to-one map between time and photon energy for each trajectory. The short and long trajectories in H_{2} and D_{2} are used simultaneously to retrieve the nuclear dynamics on the attosecond and ångström scale. Compared to using only short trajectories, this extends the temporal range of the measurement to one optical cycle. The experiment is also applied to methane and ammonia molecules.

13.
Nat Commun ; 8: 15651, 2017 06 15.
Article En | MEDLINE | ID: mdl-28643771

Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales.

14.
Phys Rev Lett ; 114(10): 103004, 2015 Mar 13.
Article En | MEDLINE | ID: mdl-25815929

Strong-field ionization of aligned diatomic and polyatomic molecules such as O2, N2, C2H4, and others in circularly polarized laser fields is investigated theoretically. By calculating the emission-angle-resolved lateral width of the momentum distribution perpendicular to the polarization plane, we show that nodal planes in molecular orbitals are directly imprinted on the angular dependence of the width. We demonstrate that orbital symmetries can be distinguished with the information obtained by observing the lateral width in addition to the angular distributions.

15.
Phys Rev Lett ; 111(4): 043901, 2013 Jul 26.
Article En | MEDLINE | ID: mdl-23931368

From the numerical solution of the time-dependent Schrödinger equation, we obtain the times of ionization and return of the laser-driven electron in high-order harmonic generation by probing the dynamics with a second harmonic field polarized orthogonal to the fundamental field and observing the harmonic emission in dependence on the two-color delay. Our retrieval method using complex-time evolution gives ionization and return times in excellent agreement with the quantum-orbit model, while a retrieval based on real-time classical dynamics can introduce substantial errors. Because of the imaginary parts, the harmonic signal polarized along the probe field is nonzero for any two-color delay. The tunneling time can be retrieved under an assumption for the return time.

16.
J Phys Chem A ; 116(46): 11427-33, 2012 Nov 26.
Article En | MEDLINE | ID: mdl-22946899

Extending the Shin-Metiu two-electron Hamiltonian, we construct a new Hamiltonian with effective singlet-triplet couplings. The Born-Oppenheimer electronic potentials and couplings are obtained for different parameters, and the laser-free dynamics is calculated with the full Hamiltonian and in the adiabatic limit. We compare the dynamics of the system using nuclear wave packets for different numbers of Born-Oppenheimer potentials and vibronic wave packets on a full 3-dimensional (two electron coordinates plus one nuclear coordinate) grid. Using strong fields, we show that it is possible to dynamically lock the spin state of the system by decoupling the singlet-triplet transition via a nonresonant dynamic Stark effect in the adiabatic limit. Although a similar spin-locking mechanism is observed in the dynamics of vibronic wave packets, multiphoton ionization cannot be neglected leading to the breakdown of the control scheme.


Quantum Theory , Vibration
17.
Nature ; 485(7398): 313-4, 2012 May 16.
Article En | MEDLINE | ID: mdl-22596149
18.
Phys Rev Lett ; 108(4): 043004, 2012 Jan 27.
Article En | MEDLINE | ID: mdl-22400836

Accurate molecular imaging via high-order harmonic generation relies on comparing harmonic emission from a laser-irradiated molecule and an adequate reference system. However, an ideal reference atom with the same ionization properties as the molecule is not always available. We show that for suitably designed, very short laser pulses, a one-to-one mapping from high-order harmonic frequencies to electron momenta in above-threshold ionization exists. Comparing molecular and atomic momentum distributions then provides the electron recollision amplitude in the molecule for enhanced molecular imaging. The method retrieves the molecular recombination transition moments highly accurately, even with suboptimal reference atoms.

19.
J Phys Chem A ; 116(11): 2723-7, 2012 Mar 22.
Article En | MEDLINE | ID: mdl-22047604

By solution of the time-dependent two-electron Schrödinger equation, we demonstrate that strong-field ionization in combination with electron correlation can localize bound electron wave packets in molecules. The wave packet creation is revealed by the emission spectrum in high-order harmonic generation, which is sensitive to the ionization and recombination phase difference between different ionization channels. For hydrogen molecules at stretched internuclear distance, we find that the ionization phase difference between the gerade and ungerade channels is in the range from π and 1.5π, indicating that the bound wave packet either is initially on the same side as the outgoing electron or is delocalized.

20.
Phys Rev Lett ; 94(14): 143003, 2005 Apr 15.
Article En | MEDLINE | ID: mdl-15904062

By solving the time-dependent Schrödinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process.

...