Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3021-3027, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252876

RESUMEN

The effects on the lattice structure and electronic properties of different polymorphs of silver halide, AgX (X = Cl, Br, and I), induced by laser irradiation (LI) and electron irradiation (EI) are investigated using a first-principles approach, based on the electronic temperature (Te) within a two-temperature model (TTM) and by increasing the total number of electrons (Ne), respectively. Ab initio molecular dynamics (AIMD) simulations provide a clear visualization of how Te and Ne induce a structural and electronic transformation process during LI/EI. Our results reveal the diffusion processes of Ag and X ions, the amorphization of the AgX lattices, and a straightforward interpretation of the time evolution for the formation of Ag and X nanoclusters under high values of Te and Ne. Overall, the present work provides fine details of the underlying mechanism of LI/EI and promises to be a powerful toolbox for further cross-scale modeling of other semiconductors.

2.
Carbohydr Polym ; 304: 120505, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641171

RESUMEN

It is advantageous to understand the relationship between cellulose fiber morphology and the rheological behavior of its dispersions so that their application can be optimized. The goal of this study was to produce sugarcane bagasse-sourced cellulose dispersions with different numbers of high-pressure homogenization cycles. Microfluidization produced cellulose nanofibers (between 5 and 80 nm in diameter) with similar surface charge densities and crystallinities (measured on the resulting films). Oscillatory rheology showed that TEMPO-oxidized cellulose dispersions exhibited gel-like behavior. However, not only did the samples with more microfluidization cycles present a lower storage modulus, but the sample with 100 cycles completely lost the gel-like characteristic, presenting a viscous fluid rheological behavior. Thixotropy loop tests revealed the influence of nanofiber length on the dispersion's structure, as evidenced by the decrease in the hysteresis value along with fiber breakage. Therefore, our findings demonstrate that the rheological properties of the dispersion can be tuned according to the length of the nanofibers, allowing for targeted applications.


Asunto(s)
Celulosa Oxidada , Nanofibras , Saccharum , Celulosa/química , Nanofibras/química , Reología/métodos
3.
Phys Rev Lett ; 129(4): 046101, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939018

RESUMEN

Using a combination of in situ high-resolution transmission electron microscopy and density functional theory, we report the formation and rupture of ZrO_{2} atomic ionic wires. Near rupture, under tensile stress, the system favors the spontaneous formation of oxygen vacancies, a critical step in the formation of the monatomic bridge. In this length scale, vacancies provide ductilelike behavior, an unexpected mechanical behavior for ionic systems. Our results add an ionic compound to the very selective list of materials that can form monatomic wires and they contribute to the fundamental understanding of the mechanical properties of ceramic materials at the nanoscale.

4.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630858

RESUMEN

Hematite is considered a promising photoanode material for photoelectrochemical water splitting, and the literature has shown that the photoanode production process has an impact on the final efficiency of hydrogen generation. Among the methods used to process hematite photoanode, we can highlight the thin films from the colloidal deposition process of magnetic nanoparticles. This technique leads to the production of high-performance hematite photoanode. However, little is known about the influence of the magnetic field and heat treatment parameters on the final properties of hematite photoanodes. Here, we will evaluate those processing parameters in the morphology and photoelectrochemical properties of nanostructured hematite anodes. The analysis of thickness demonstrated a relationship between the magnetic field and nanoparticles concentration utilized to prepare the thin films, showing that the higher magnetic fields decrease the thickness. The Jabs results corroborate to influence the magnetic field since the use of a higher magnetic field decreases the deposited material amount, consequently decreasing the absorption of the thin films. The PEC measurements showed that at higher concentrations, the use of higher magnetic fields increases the JPH values, and lower magnetic fields cause a decrease in JPH when using the higher nanoparticle concentrations.

5.
Nanoscale ; 14(18): 6811-6821, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35388391

RESUMEN

Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.

6.
ACS Omega ; 6(42): 28049-28062, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723005

RESUMEN

This paper demonstrates that femtosecond laser-irradiated Fe2O3 materials containing a mixture of α-Fe2O3 and ε-Fe2O3 phases showed significant improvement in their photoelectrochemical performance and magnetic and optical properties. The absence of Raman-active vibrational modes in the irradiated samples and the changes in charge carrier emission observed in the photocurrent density results indicate an increase in the density of defects and distortions in the crystalline lattice when compared to the nonirradiated ones. The magnetization measurements at room temperature for the nonirradiated samples revealed a weak ferromagnetic behavior, whereas the irradiated samples exhibited a strong one. The optical properties showed a reduction in the band gap energy and a higher conductivity for the irradiated materials, causing a higher current density. Due to the high performance observed, it can be applied in dye-sensitized solar cells and water splitting processes. Quantum mechanical calculations based on density functional theory are in accordance with the experimental results, contributing to the elucidation of the changes caused by femtosecond laser irradiation at the molecular level, evaluating structural, energetic, and vibrational frequency parameters. The surface simulations enable the construction of a diagram that elucidates the changes in nanoparticle morphologies.

7.
Nanotechnology ; 31(16): 165501, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31770731

RESUMEN

Cyclodextrin (CD) is a conical compound used in food and pharmaceutical industry to complexation of hydrophobic substances. It is a product of microbial enzymes which converts starch into CD during their activity. We aim to detect CD using active-electrode biosensor of SnO2. They were grown on active electrode by the VLS method. The CD consists of several glucose units which have hydroxyl groups which tend to bind to interface states present in nanowires changing their conductivity. Experimental results of electrical conductivity at different CD concentrations are presented. A model that describes the influence of adsorbed glucose on nanowires and its electrical properties is also presented. Some general observations are performed on the applicability of the CD adsorption method by the nanowire-based biosensor.


Asunto(s)
Técnicas Biosensibles , Ciclodextrinas/análisis , Glucosiltransferasas/metabolismo , Nanocables/química , Compuestos de Estaño/química , Bacillus/enzimología , Electricidad , Electrodos , Nanocables/ultraestructura , Factores de Tiempo
8.
J Phys Chem Lett ; 10(7): 1471-1476, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30868882

RESUMEN

Nanocrystals (NCs) present unique physicochemical properties arising from their size and the presence of ligands. Comprehending and controlling the ligand-crystal interactions as well as the ligand exchange process is one of the central themes in NC science nowadays. However, the relationship between NC structural disorder and the ligand exchange effect in the NC atomic structure is not yet sufficiently understood. Here we combine pair distribution function analysis from electron diffraction data, extended X-ray absorption fine structure, and high-resolution transmission electron microscopy as experimental techniques and first-principles density functional theory calculations to elucidate the ligand exchange effects in the ZrO2 NC structure. We report a substantial decrease in the structural disorder for ZrO2 NCs caused by strain rearrangements during the ligand exchange process. These results can have a direct impact on the development of functional nanomaterials, especially in properties controlled by structural disorder.

9.
Sci Rep ; 8(1): 1884, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382839

RESUMEN

In recent years, complex nanocomposites formed by Ag nanoparticles coupled to an α-Ag2WO4 semiconductor network have emerged as promising bactericides, where the semiconductor attracts bacterial agents and Ag nanoparticles neutralize them. However, the production rate of such materials has been limited to transmission electron microscope processing, making it difficult to cross the barrier from basic research to real applications. The interaction between pulsed laser radiation and α-Ag2WO4 has revealed a new processing alternative to scale up the production of the nanocomposite resulting in a 32-fold improvement of bactericidal performance, and at the same time obtaining a new class of spherical AgxWyOz nanoparticles.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Plata/química , Rayos Láser , Luz , Microscopía Electrónica de Transmisión/métodos , Nanocompuestos/química
10.
Phys Chem Chem Phys ; 18(31): 21780-8, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27436162

RESUMEN

Hematite is considered to be the most promising material used as a photoanode for water splitting and here we utilized a sintered hematite photoanode to address the fundamental electrical, electrochemical and photoelectrochemical behavior of this semiconductor oxide. The results presented here allowed us to conclude that the addition of Sn(4+) decreases the grain boundary resistance of the hematite polycrystalline electrode. Heat treatment in a nitrogen (N2) atmosphere also contributes to a decrease of the grain boundary resistance, supporting the evidence that the presence of oxygen is fundamental for the formation of a voltage barrier at the hematite grain boundary. The N2 atmosphere affected both doped and undoped sintered electrodes. We also observed that the heat treatment atmosphere modifies the surface states of the solid-liquid interface, changing the charge-transfer resistance. A two-step treatment, with the second being performed at a low temperature in an oxygen (O2) atmosphere, resulted in a better solid-liquid interface.

11.
Chemistry ; 21(44): 15583-8, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26367390

RESUMEN

A simple approach to exfoliate and functionalize MoS2 in a single-step is described, which combines the dispersion of MoS2 in polybutadiene solution and ultrasonication processes. The great advantage of this process is that a colloidal stability of MoS2 in nonpolar solvent is achieved by chemically bonding polybutadiene on the perimeter edge sites of MoS2 sheets. In addition, elastomeric nanocomposite has been prepared with singular mechanical properties using functionalized MoS2 as nanofiller in a polybutadiene matrix with a subsequent vulcanization reaction.

12.
Phys Chem Chem Phys ; 17(5): 3820-31, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25562068

RESUMEN

Although the molecular modeling of self-assembling processes stands as a challenging research issue, there have been a number of breakthroughs in recent years. This report describes the use of large-scale molecular dynamics simulations with coarse grained models to study the spontaneous self-assembling of capped nanoparticles in chloroform suspension. A model system comprising 125 nanoparticles in chloroform evolved spontaneously from a regular array of independent nanoparticles to a single thread-like, ramified superstructure spanning the whole simulation box. The aggregation process proceeded by means of two complementary mechanisms, the first characterized by reactive collisions between monomers and oligomers, which were permanently trapped into the growing superstructure, and the second a slow structural reorganization of the nanoparticle packing. Altogether, these aggregation processes were over after ca. 0.6 µs and the system remained structurally and energetically stable until 1 µs. The thread-like structure closely resembles the TEM images of capped ZrO2, but a better comparison with experimental results was obtained by the deposition of the suspension over a graphene solid substrate, followed by the complete solvent evaporation. The agreement between the main structural features from this simulation and those from the TEM experiment was excellent and validated the model system. In order to shed further light on the origins of the stable aggregation of the nanoparticles, the Gibbs energy of aggregation was computed, along with its enthalpy and entropy contributions, both in chloroform and in a vacuum. The thermodynamic parameters arising from the modeling are consistent with larger nanoparticles in chloroform due to the solvent-swelled organic layer and the overall effect of the solvent was the partial destabilization of the aggregated state as compared to the vacuum system. The modeling strategy has been proved effective and reliable to describe the self-assembling of capped nanoparticles, but we must acknowledge the fact that larger model systems and longer timescales will be necessary in future investigations in order to assess structural and dynamical information approaching the behavior of macroscopic systems.


Asunto(s)
Simulación de Dinámica Molecular , Nanopartículas/química , Cloroformo/química , Grafito/química , Microscopía Electrónica de Transmisión , Propiedades de Superficie , Termodinámica , Circonio/química
13.
Phys Chem Chem Phys ; 16(3): 1089-94, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24287784

RESUMEN

A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.

14.
Nanoscale Res Lett ; 8(1): 475, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24225330

RESUMEN

This work presents the morphological characterization of CeO2 nanocrystals by the analysis of single unfiltered high-angle annular dark-field (HAADF)-high-resolution scanning transmission electron microscopy (HRSTEM) images. The thickness of each individual atomic column is estimated by the classification of its HAADF integrated intensity using a Gaussian mixture model. The resulting thickness maps obtained from two example nanocrystals with distinct morphology were analyzed with aid of the symmetry from the CeO2 crystallographic structure, providing an approximation for their 3-D morphology with high spatial resolution. A confidence level of ±1 atom per atomic column along the viewing direction on the thickness estimation is indicated by the use of multislice image simulation. The described characterization procedure stands out as a simple approach for retrieving morphological parameters of individual nanocrystals, such as volume and specific surface areas for different crystalline planes. The procedure is an alternative to the tilt-series tomography technique for a number of nanocrystalline systems, since its application does not require the acquisition of multiple images from the same nanocrystal along different zone axes.

15.
ChemSusChem ; 5(12): 2341-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23139181

RESUMEN

This work describes a synthetic method to produce a WO(3) nanowire as well as to prepare photoanodes by colloidal nanowire deposition. We also studied the influence of a nanowire phase on the photoanode performance for water splitting. Among the nanowires synthesized by using nonhydrolytic media, the orthorhombic WO(3)·H(2) O nanowire produced a photoanode with excellent performance (a photocurrent of 1.96 mA cm(-2) at 1.23 V(RHE) ) and good photocurrent stability during long-term analysis (chronoamperometry test). The structural and photoelectrochemical characterization showed the importance of nanostructural features such as exposed (200), (020), and (002) facets and porosity in the WO(3) photoanode performance.


Asunto(s)
Electroquímica/métodos , Nanocables/química , Óxidos/química , Energía Solar , Tungsteno/química , Agua/química , Coloides , Electrodos , Microscopía Electrónica de Transmisión , Procesos Fotoquímicos , Porosidad , Propiedades de Superficie
16.
Nano Lett ; 12(11): 5708-13, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23039854

RESUMEN

In this study, some keys in the knowledge of nanocrystals dissolving by the direct phenomenon observations are provided through in situ transmission electron microscopy experiments. The new characteristic of anisotropic nanoparticles dissolving is discussed and correlated with the evolution of the crystal to reach a minimum surface free energy (Gibbs-Wulff theorem), which has an impact on the nanocrystal ripening models. The process whereby the ripening occurs was identified and correlated to the adparticle motion.


Asunto(s)
Anisotropía , Carbono/química , Cerio/química , Cristalización , Microscopía Electrónica de Transmisión/métodos , Movimiento (Física) , Nanopartículas/química , Nanotecnología/métodos , Tamaño de la Partícula , Física/métodos , Propiedades de Superficie , Temperatura , Termodinámica , Factores de Tiempo
17.
Chem Commun (Camb) ; 48(62): 7687-9, 2012 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-22735236

RESUMEN

We merged the microwave synthesis approach with an extension of the nonhydrolytic sol-gel method to induce highly selective crystallization of MoS(2) layers over graphene sheets. This hybrid material showed superior electrocatalytic activity in hydrogen evolution reactions.

18.
J Phys Condens Matter ; 24(22): 225303, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22556197

RESUMEN

We report on the analysis of nonlinear current-voltage characteristics exhibited by a set of blocking metal/SnO(2)/metal. Schottky barrier heights in both interfaces were independently extracted and their dependence on the metal work function was analyzed. The disorder-induced interface states effectively pinned the Fermi level at the SnO(2) surface, leading to the observed Schottky barriers. The model is useful for any two-terminal device which cannot be described by a conventional diode configuration.

19.
Chemphyschem ; 13(2): 437-43, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22241849

RESUMEN

This work presents an overview of high-resolution scanning transmission electron microscopy (HRSTEM) techniques and exemplifies the novel quantitative characterization possibilities that have emerged from recent advances in these methods. The synergistic combination of atomic resolution imaging and spectroscopy provided by HRSTEM is highlighted as a unique feature that can provide a comprehensive analytical description of material properties at the nanoscale. State-of-the-art high-angle annular dark field and annular bright field examples are depicted as well as the use of X-ray energy-dispersive spectroscopy and electron energy-loss spectroscopy for probing samples properties at the atomic scale. In addition, promising techniques such as cathodoluminescence, confocal HRSTEM, and diffraction mapping are introduced. The presented examples and results indicate that HRSTEM-related techniques are fundamental tools for comprehensive assessment of properties at the atomic scale.

20.
Chemistry ; 17(41): 11515-9, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21953929

RESUMEN

The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO(2)) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA