Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Immunol ; 44(8): 585-597, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37407365

RESUMEN

Glycans cover the surfaces of all mammalian cells through a process called glycosylation. Nearly all proteins and receptors that integrate the intricate series of co-stimulatory/inhibitory pathways of the immune system are glycosylated. Growing evidence indicates that the development of the immune system at the origins of T and B cell development is tightly regulated by glycosylation. In this opinion, we hypothesize that the glycome composition of developing T and B cells is developmentally regulated. We discuss how glycans play fundamental roles in lymphocyte development and how glycans early define T and B cell functionality in multiple aspects of adaptive immunity. These advances can provide opportunities for the discovery of novel disease factors and more effective candidate treatments for various conditions.


Asunto(s)
Inmunidad Adaptativa , Activación de Linfocitos , Animales , Humanos , Glicosilación , Polisacáridos , Mamíferos
2.
Sci Adv ; 9(12): eadd5028, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947620

RESUMEN

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.


Asunto(s)
Neoplasias de la Mama , Células Endoteliales , Humanos , Femenino , Células Endoteliales/metabolismo , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis/genética , Factor de Necrosis Tumoral alfa/farmacología
3.
Inflamm Bowel Dis ; 28(6): 947-962, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34849933

RESUMEN

Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.


Colitis-associated cancer (CAC) is a major complication of inflammatory bowel disease and the molecular mechanisms underlying CAC progression are still elusive. Protein glycosylation holds a great promise for improving the understanding of CAC immunopathogenesis, opening new avenues for clinical and therapeutic interventions.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Colitis/patología , Neoplasias Colorrectales/patología , Sulfato de Dextran , Glicosilación , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...