Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Neurosci Lett ; 820: 137589, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38101612

Depending on its duration and severity, stress may contribute to neuropsychiatric diseases such as depression and anxiety. Studies have shown that stress impacts the hypothalamic-pituitary-adrenal (HPA) axis, but its downstream molecular, behavioral, and nociceptive effects remain unclear. We hypothesized that a 2-hour single exposure to acute restraint stress (ARS) activates the HPA axis and changes DNA methylation, a molecular mechanism involved in the machinery of stress regulation. We further hypothesized that ARS induces anxiety-like and risk assessment behavior and alters nociceptive responses in the rat. We employed biochemical (radioimmunoassay for corticosterone; global DNA methylation by enzyme immunoassay and western blot for DNMT3a expression in the amygdala, ventral hippocampus, and prefrontal cortex) and behavioral (elevated plus maze and dark-light box for anxiety and hot plate test for nociception) tests in adult male Wistar rats exposed to ARS or handling (control). All analyses were performed 24 h after ARS or handling. We found that ARS increased corticosterone levels in the blood, increased the expression of DNMT3a in the prefrontal cortex, promoted anxiety-like and risk assessment behaviors in the elevated plus maze, and increased the nociceptive threshold observed in the hot plate test. Our findings suggest that ARS might be a helpful rat model for studying acute stress and its effects on physiology, epigenetic machinery, and behavior.


Corticosterone , Hypothalamo-Hypophyseal System , Rats , Male , Animals , Hypothalamo-Hypophyseal System/metabolism , Rats, Wistar , Stress, Psychological/psychology , Pituitary-Adrenal System/metabolism , Brain/metabolism , Anxiety/metabolism , Restraint, Physical/psychology
2.
Behav Brain Res ; 452: 114588, 2023 08 24.
Article En | MEDLINE | ID: mdl-37474023

Chronic neuropathic pain (CNP) is a vast world health problem often associated with the somatosensory domain. This conceptualization is problematic because, unlike most other sensations that are usually affectively neutral and may present emotional, affective, and cognitive impairments. Neuronal circuits that modulate pain can increase or decrease painful sensitivity based on several factors, including context and expectation. The objective of this study was to evaluate whether subchronic treatment with Cannabidiol (CBD; 0.3, 3, and 10 mg/kg intraperitoneal route - i.p., once a day for 3 days) could promote pain-conditioned reversal, in the conditioned place preference (CPP) test, in male Wistar rats submitted to chronic constriction injury (CCI) of the sciatic nerve. Then, we evaluated the expression of astrocytes and microglia in animals treated with CBD through the immunofluorescence technique. Our results demonstrated that CBD promoted the reversal of CPP at 3 and 10 mg/kg. In CCI animals, CBD was able to attenuate the increase in neuronal hyperactivity, measured by FosB protein expression, in the regions of the corticolimbic circuit: anterior cingulate cortex (ACC), complex basolateral amygdala (BLA), granular layer of the dentate gyrus (GrDG), and dorsal hippocampus (DH) - adjacent to subiculum (CA1). CBD also prevented the increased expression of GFAP and IBA-1 in CCI animals. We concluded that CBD effects on CNP are linked to the modulation of the aversive component of pain. These effects decrease chronic neuronal activation and inflammatory markers in regions of the corticolimbic circuit.


Cannabidiol , Neuralgia , Rats , Animals , Male , Rats, Wistar , Cannabidiol/pharmacology , Avoidance Learning , Neuroinflammatory Diseases , Neuralgia/drug therapy , Neuralgia/metabolism
3.
J Pain Res ; 16: 2047-2062, 2023.
Article En | MEDLINE | ID: mdl-37342611

Background: Temporomandibular joint (TMJ)-associated inflammation contributes to the pain reported by patients with temporomandibular disorders (TMD). It is common for patients diagnosed with TMD to report pain in the masticatory muscles and temporomandibular joints, headache, and jaw movement disturbances. Although TMD can have different origins, including trauma and malocclusion disorder, anxiety/depression substantially impacts the development and maintenance of TMD. In general, rodent studies on orofacial pain mechanisms involve the use of tests originally developed for other body regions, which were adapted to the orofacial area. To overcome limitations and expand knowledge in orofacial pain, our group validated and characterized an operant assessment paradigm in rats with both hot and cold stimuli as well mechanical stimuli. Nevertheless, persistent inflammation of the TMJ has not been evaluated with this operant orofacial pain assessment device (OPAD). Methods: We characterized the thermal orofacial sensitivity for cold, neutral, and hot stimuli during the development of TMD using the OPAD behavior test. In addition, we evaluated the role of transient receptor potential vanilloid 1 (TRPV1) expressing nociceptors in rats with persistent TMJ inflammation. The experiments were performed in male and female rats with TMJ inflammation induced by carrageenan (CARR). Additionally, resiniferatoxin (RTX) was administered into the TMJs prior CARR to lesion TRPV1-expressing neurons to evaluate the role of TRPV1-expressing neurons. Results: We evidenced an increase in the number of facial contacts and changes in the number of reward licks per stimulus on neutral (37°C) and cold (21°C) temperatures. However, at the hot temperature (42°C), the inflammation did not induce changes in the OPAD test. The prior administration of RTX in the TMJ prevented the allodynia and thermal hyperalgesia induced by CARR. Conclusion: We showed that TRPV-expressing neurons are involved in the sensitivity to carrageenan-induced pain in male and female rats evaluated in the OPAD.

4.
Behav Processes ; 207: 104856, 2023 Apr.
Article En | MEDLINE | ID: mdl-36921909

Chronic restraint stress (CRS) can have different behavioral effects depending on variables associated with the stressor and the organism. This study aimed to verify the effect of the interaction between sex and duration of the CRS protocol in rats. Sprague-Dawley rats were divided by sex, intervention (CRS; control), and CRS duration (11 days; 22 days). Rats exposed to CRS showed better spatial learning than controls in the Morris water maze test, regardless of sex and stress duration. Males exposed to CRS for 11 days showed a higher rate of behaviors associated with anxiety than males exposed to 22 days of CRS at the elevated plus maze test, but the same was not observed in females. The weight gain of animals exposed to stress decreased in the first 11 days, showing a recovery from day 11 to day 22 of intervention. No effects of CRS were observed on behaviors associated with depression in the sucrose preference test. The results suggest habituation to the protocol, with a progressive decrease in the harmful effects of stress on and maintenance of the beneficial effects. It is possible that females are more resistant to the harmful effects of CRS on anxiety.


Spatial Learning , Stress, Psychological , Male , Female , Rats , Animals , Rats, Sprague-Dawley , Restraint, Physical/methods , Anxiety , Maze Learning
5.
Antioxidants (Basel) ; 11(11)2022 Oct 30.
Article En | MEDLINE | ID: mdl-36358525

Chronic inflammatory pain is manifested in many diseases. The potential use of molecular hydrogen (H2) as a new therapy for neurological disorders has been demonstrated. Recent studies prove its analgesic properties in animals with neuropathic pain, but the possible antinociceptive, antidepressant, and/or anxiolytic actions of H2 during persistent inflammatory pain have not been investigated. Therefore, using male mice with chronic inflammatory pain incited by the subplantar injection of complete Freud's adjuvant (CFA), we assessed the actions of hydrogen-rich water (HRW) systemically administered on: (1) the nociceptive responses and affective disorders associated and (2) the oxidative (4-hydroxy-2-nonenal; 4-HNE), inflammatory (phosphorylated-NF-kB inhibitor alpha; p-IKBα), and apoptotic (Bcl-2-like protein 4; BAX) changes provoked by CFA in the paws and amygdala. The role of the antioxidant system in the analgesia induced by HRW systemically and locally administered was also determined. Our results revealed that the intraperitoneal administration of HRW, besides reducing inflammatory pain, also inhibited the depressive- and anxiolytic-like behaviors associated and the over expression of 4-HNE, p-IKBα, and BAX in paws and amygdala. The contribution of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1 pathway in the analgesic activities of HRW, systemically or locally administered, was also shown. These data revealed the analgesic, antidepressant, and anxiolytic actions of HRW. The protective, anti-inflammatory, and antioxidant qualities of this treatment during inflammatory pain were also demonstrated. Therefore, this study proposes the usage of HRW as a potential therapy for chronic inflammatory pain and linked comorbidities.

6.
Brain Res Bull ; 188: 169-178, 2022 10 01.
Article En | MEDLINE | ID: mdl-35952846

The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.


Chronic Pain , Organometallic Compounds , Animals , Antioxidants/metabolism , Carbon Monoxide/metabolism , Central Nervous System/metabolism , Chronic Pain/metabolism , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Nociception , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacology , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , bcl-2-Associated X Protein/metabolism
7.
Brain Res Bull ; 176: 142-150, 2021 11.
Article En | MEDLINE | ID: mdl-34500037

Psychological stress and occlusal alterations are contributing etiologic factors for temporomandibular and muscular disorders in the orofacial area. The neural modulation recruited for this relationship, however, is not elucidated. The aim of this study was to investigate potential central mechanisms involved in the exodontia-induced occlusal instability associated with unpredictable chronic stress (UCS). Male adult Wistar rats were submitted to occlusal instability (unilateral molar teeth extraction) and/or to a UCS protocol and treated with diazepam or vehicle. The anxiety-like behavior was evaluated by elevated plus maze (EPM) and open field (OF) tests. Limbic structures such as the central nucleus of the amygdala (CeA), paraventricular nucleus of the hypothalamus (PVN), dorsal periaqueductal gray matter (dPAG) and nucleus accumbens core (NAc) were analyzed for expression of FosB/ΔFosB (immediate early genes) by immunohistochemistry. Exodontia and/or UCS decreased the time spent in the open arms at the EPM and the distance travelled at the OF, and increased the immobility time at the OF, suggesting anxiety-like behavior. In addition, exodontia induction resulted in an upregulation of FosB/ΔFosB in the CeA, PVN and dPAG, while UCS and exodontia + UCS upregulate FosB/ΔFosB immunoreactivity in the CeA, PVN, dPAG and NAc. Treatment with diazepam decreased the expression of FosB/ΔFosB in all analyzed structures of animals subject to UCS and exodontia + UCS, while promoted a reduction in the FosB/ΔFosB expression in the CeA, PVN and dPAG in animals subject to exodontia. Our findings showed an anxiogenic effect of exodontia and UCS, which is correlated with intranuclear neuron activation of limbic structures in a spatially dependent manner and that is prevented by the administration of diazepam.


Limbic System/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/metabolism , Tooth Extraction , Animals , Anti-Anxiety Agents/pharmacology , Diazepam/pharmacology , Immunohistochemistry , Limbic System/drug effects , Male , Neurons/drug effects , Rats , Rats, Wistar , Up-Regulation
8.
Neuropharmacology ; 197: 108712, 2021 10 01.
Article En | MEDLINE | ID: mdl-34274349

The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.


Anxiety/drug therapy , Cannabidiol/therapeutic use , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Receptor, Cannabinoid, CB1/drug effects , TRPV Cation Channels/drug effects , Animals , Anxiety/psychology , Cerebral Cortex/metabolism , Hippocampus/metabolism , Hot Temperature , Limbic System/drug effects , Male , Nerve Net/drug effects , Neuralgia/metabolism , Neuralgia/psychology , Pain Measurement/drug effects , Physical Stimulation , Rats , Rats, Wistar , Sciatica/drug therapy
9.
Epilepsy Behav ; 119: 107962, 2021 06.
Article En | MEDLINE | ID: mdl-33887676

Cannabidiol (CBD) is a marijuana compound implicated in epilepsy treatment in animal models and pharmacoresistant patients. However, little is known about chronic CBD administration's effects in chronic models of seizures, especially regarding its potential antiepileptogenic effects. In the present study, we combined a genetic model of epilepsy (the Wistar Audiogenic Rat strain - WARs), a chronic protocol of seizures (the audiogenic kindling - AuK), quantitative and sequential behavioral analysis (neuroethology), and microscopy imaging to analyze the effects of chronic CBD administration in a genetic model of epilepsy. The acute audiogenic seizure is characterized by tonic-clonic seizures and intense brainstem activity. However, during the AuK WARs can develop limbic seizures associated with the recruitment of forebrain and limbic structures. Here, chronic CBD administration, twice a day, attenuated brainstem, tonic-clonic seizures, prevented limbic recruitment, and suppressed limbic (kindled) seizures, suggesting CBD antiepileptogenic effects. Additionally, CBD prevented chronic neuronal hyperactivity, suppressing FosB immunostaining in the brainstem (inferior colliculus and periaqueductal gray matter) and forebrain (basolateral amygdala nucleus and piriform cortex), structures associated with tonic-clonic and limbic seizures, respectively. Chronic seizures increased cannabinoid receptors type 1 (CB1R) immunostaining in the hippocampus and the BLA, while CBD administration prevented changes in CB1R expression induced by the AuK. The neuroethological analysis provided details about CBD's protective effects against brainstem and limbic seizures associated with FosB expression. Our results strongly suggest chronic CBD anticonvulsant and antiepileptogenic effects associated with reduced chronic neuronal activity and modulation of CB1R expression. We also support the chronic use of CBD for epilepsies treatments.


Anticonvulsants , Cannabidiol , Acoustic Stimulation , Animals , Anticonvulsants/therapeutic use , Disease Models, Animal , Humans , Models, Genetic , Rats , Rats, Wistar
10.
Physiol Behav ; 234: 113372, 2021 05 15.
Article En | MEDLINE | ID: mdl-33647267

It is unclear whether all animal models of anxiety-like states developed using males are appropriate for use in females. In females, tests involving a learning component might be influenced not only by estrous cycle stage on the test day but also by the stage during the conditioning process. We used two tests - conditioned freezing (CF) and fear potentiated startle (FPS) to compare responsiveness of male rats and females conditioned and/or tested in proestrus (P) or late diestrus (LD). For CF all rats displayed a similar freezing response regardless of sex or estrous cycle stage. In terms of FPS, males and females conditioned in P and tested in P or LD, and females conditioned in LD and tested in LD all showed potentiated startle. The response waned during the test session in males and in females conditioned in P, but not in those conditioned in LD. In contrast, FPS was not apparent in the first half of the test session in females conditioned in LD and tested in P but developed in the second half. We suggest that fear learning during P and LD is robust but may be initially be obscured in rats tested in P because of generalization to the CS due to high estrogen. Estrous cycle stage is an important consideration which must be taken into account in designing behavioural tests in females.


Estrous Cycle , Reflex, Startle , Animals , Fear , Female , Male , Proestrus , Rats , Rats, Sprague-Dawley
11.
J Cell Physiol ; 236(9): 6571-6580, 2021 09.
Article En | MEDLINE | ID: mdl-33611790

Temporomandibular disorder (TMD) is characterized by acute or chronic orofacial pain, which can be associated with inflammatory processes in the temporomandibular joint (TMJ) and emotional disorders. Peripheral and central sensitization in painful orofacial processes is common, and it can be triggered by peripheral inflammatory challenge with consequent neuroinflammation phenomena. Such neuroinflammation comes from inflammatory products from supportive cells, blood-brain barrier, and extracellular matrix. Here, we evaluated the possible recruitment of limbic structures for modified matrix metalloproteinases (MMPs) expression and activity during temporomandibular inflammation-induced orofacial persistent pain. The inflammatory process in TMJs of rats was induced by Freund's Complete Adjuvant (CFA) administration. The activity and expression of MMPs-2 and 9 were assessed by in situ zymography and conventional zymography, respectively. A glial colocalization with the MMPs was performed using immunofluorescence. The results evidenced both short- and long-term alterations on MMP-2 and -9 expression in the limbic structures following CFA-induced temporomandibular inflammation. The gelatinolytic activity was increased in the central amygdala, hippocampus, hypothalamus, ventrolateral periaqueductal gray (vlPAG), superior colliculus, and inferior colliculus. Finally, an increase of colocalization of MMP-2/GFAP and MMP-9/GFAP in CFA-induced inflammation groups was observed when compared with saline groups in the central amygdala and vlPAG. It is possible to suggest that glial activation is partly responsible for the production of gelatinases in the persistent orofacial pain, and it is involved in the initiation and maintenance of this process, indicating that inhibition of MMPs might be pursued as a potential new therapeutic target for TMD.


Inflammation/pathology , Limbic System/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Temporomandibular Joint Disorders/enzymology , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint/enzymology , Temporomandibular Joint/pathology , Amygdala/metabolism , Animals , Astrocytes/metabolism , Facial Pain/complications , Freund's Adjuvant , Gelatin/metabolism , Gelatinases/metabolism , Limbic System/pathology , Male , Rats, Wistar , Up-Regulation
12.
Brain Res Bull ; 169: 8-17, 2021 04.
Article En | MEDLINE | ID: mdl-33422660

Carbon monoxide (CO) and nitric oxide (NO) modulate inflammatory nociception and anxiety. We evaluate whether treatments with a heme oxygenase-1 (HO-1) inducer (CoPP) or a carbon monoxide-releasing molecule (CORM-2) are capable of inhibiting inflammatory pain aversiveness in wild type (WT) and inducible nitric oxide synthase-knock out (NOS2-KO) mice with persistent inflammation and its relationship with µ- (MOR) and δ- (DOR) opioid receptors. WT and NOS2-KO male mice with complete Freund's adjuvant (CFA) injected into the hind paw were evaluated in the von Frey and the escape-avoidance paradigm (PEAP) tests, at 10 days, before and after the treatment with CORM-2 (5 mg/kg) or CoPP (2.5 mg/kg). WT mice groups treated with CORM-2 or CoPP also received naloxone (NLX, a non-specific opioid receptor antagonist). The HO-1, neuronal nitric oxide synthase, NOS2, MOR, and DOR expression in the dorsal hippocampus were evaluated by western blot. CFA reduced mechanical threshold in WT and NOS2-KO mice but only increased the percentage of time in the light compartment in the PEAP in WT mice. CORM-2 and CoPP inhibited these effects in both strains. Pre-treatment with NLX reverses the anti-allodynic and anti-aversive effects of CORM-2 or CoPP in WT mice. CORM-2 and CoPP increases the protein levels of HO-1, MOR and DOR in the dorsal hippocampus of WT mice but not in NOS2-KO animals. Results showed that HOCO pathway activation promotes anti-allodynic effects and reduced pain aversiveness caused by peripheral inflammation by increasing the expression of MOR and DOR activated by HO-1 in the dorsal hippocampus.


Carbon Monoxide/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hippocampus/metabolism , Nociception/physiology , Pain/metabolism , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Animals , Avoidance Learning/physiology , Hippocampus/drug effects , Male , Mice , Mice, Knockout , Organometallic Compounds/pharmacology , Pain Measurement , Pyrazines/pharmacology , Pyrroles/pharmacology , Signal Transduction/drug effects
13.
Sci Rep ; 10(1): 8787, 2020 05 29.
Article En | MEDLINE | ID: mdl-32472004

Psychological stress and occlusal alteration are important etiologic factors for temporomandibular/masticatory muscular disorders. In particular, the exact physiologic mechanism underlying the relation by occlusal alteration and temporomandibular disorders remains unclear. Our purpose was to test the hypothesis that benzodiazepine therapy is able to prevent metabolic and vascular changes in the medial pterygoid muscle of rats under chronic stress after 14 days of unilateral exodontia. Adult Wistar rats were submitted to unpredictable chronic mild stress (10 days) and/or unilateral exodontia and their plasma and medial pterygoid muscles were removed for analysis. A pre-treatment with diazepam was used to verify its effect on stress. The parameters evaluated included anxiety behavior, plasma levels of corticosterone, metabolic activity by succinate dehydrogenase, capillary density by laminin staining and ultrastructural findings by transmission electron microscopy. Occlusal instability induced anxiety-like behavior on elevated plus-maze test and diazepam administration blocked the appearance of this behavior. Unilateral exodontia promoted in the contralateral muscle an increase of oxidative fibers and capillaries and modification of sarcoplasmic reticulum. Chronic stress caused increased glycolytic metabolism, reduced capillary density and morphological changes in mitochondria on both sides. Association of both factors induced a glycolytic pattern in muscle and hemodynamic changes. Pharmacological manipulation with diazepam inhibited the changes in the medial pterygoid muscle after stress. Our results reveal a preventive benzodiazepine treatment for stress and occlusal instability conditions affecting masticatory muscle disorders. In addition, provide insights into the mechanisms by which chronic stress and exodontia might be involved in the pathophysiology of masticatory muscular dysfunctions.


Benzodiazepines/administration & dosage , Masticatory Muscles/physiopathology , Stress, Psychological/drug therapy , Temporomandibular Joint Disorders/drug therapy , Animals , Benzodiazepines/pharmacology , Case-Control Studies , Diazepam/adverse effects , Disease Models, Animal , Male , Masticatory Muscles/drug effects , Microscopy, Electron, Transmission , Rats , Rats, Wistar , Stress, Psychological/chemically induced , Temporomandibular Joint Disorders/physiopathology , Tooth Extraction , Treatment Outcome
14.
Nitric Oxide ; 93: 90-101, 2019 12 01.
Article En | MEDLINE | ID: mdl-31604145

The mechanisms underlying temporomandibular disorders following orofacial pain remain unclear. Hydrogen sulfide (H2S), a newly identified gasotransmitter, has been reported to modulate inflammation. Cystathionine γ-lyase (CSE) is responsible for the systemical production of H2S, which exerts both pro- and antinociceptive effects through inflammation. In the current study, we investigated whether the endogenous H2S production pathway contributes to arousal and maintenance of orofacial inflammatory pain, through the investigation of the effects of a CSE inhibitor, propargyglycine (PAG), in a rat CFA (Complete Freund Adjuvant)-induced temporomandibular inflammation model to mimic persistent pain in the orofacial region. For this, rats received either CFA or saline in the temporomandibular joints (TMJs), and after 3 or 14 days, they received a single injection of PAG or saline and were evaluated for nociception with the von Frey and formalin test. Also, pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were analyzed in TMJs and trigeminal ganglion (TG). In this last one, glial cells reactivity was also verified. Endogenous H2S production rate were measured in both, TMJ and TG. Our results indicated decreased allodynia and hyperalgesic responses in rats submitted to CFA after injection of PAG. Moreover, PAG inhibited leucocyte migration to temporomandibular synovial fluid after 3 and 14 days of inflammation. PAG was able to reduce levels of CBS, CSE, TNF-α, and IL-1ß in the TMJ and TG, after 13 days of CFA injection. The observed increased activation of glial cells in the trigeminal ganglia on the 14th day of inflammation can be prevented by the highest dose of PAG. Finally, CBS and CSE expression, and endogenous H2S production rate in the TMJ and TG was found higher in rats with persistent temporomandibular inflammation compared to rats injected with saline and PAG was able to prevent this elevation. Our results elucidated the molecular mechanisms by which H2S exerts its pro-inflammatory and pro-nociceptive role in the orofacial region by alterations in both local tissue and TG.


Alkynes/therapeutic use , Glycine/analogs & derivatives , Hydrogen Sulfide/metabolism , Hyperalgesia/drug therapy , Inflammation/metabolism , Pain/drug therapy , Temporomandibular Joint/metabolism , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Glycine/therapeutic use , Interleukin-1beta/metabolism , Male , Neuroglia/drug effects , Rats, Wistar , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R223-R231, 2019 08 01.
Article En | MEDLINE | ID: mdl-31091153

Accurate diagnosis and treatment of pain is dependent on knowledge of the variables that might alter this response. Some of these variables are the locality of the noxious stimulus, the sex of the individual, and the presence of chronic diseases. Among these chronic diseases, hypertension is considered a serious and silent disease that has been associated with hypoalgesia. The main goal of this study was to evaluate the potential nociceptive differences in spontaneously hypertensive rats (SHR) regarding the locality of the stimulus, i.e., the temporomandibular joint or paw, the sex, and the role of ovarian hormones in a model of mechanical nociception (Von Frey test) or formalin-induced inflammatory nociception. Our results indicate that SHR had lower orofacial mechanical nociception beyond the lower mechanical nociception in the paw compared with WKY rats. In a model of formalin-induced inflammatory nociception, SHR also had decreased nociception compared with normotensive rats. We also sought to evaluate the influence of sex and ovarian hormones on orofacial mechanical nociception in SHR. We observed that female SHR had higher mechanical nociception than male SHR only in the paw, but it had higher formalin-induced orofacial nociception than male SHR. Moreover, the absence of ovarian hormones caused an increase in mean arterial pressure and a decrease in paw nociception in female SHR.


Hormones/pharmacology , Hypertension/physiopathology , Nociception/physiology , Sex Characteristics , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Female , Hormones/metabolism , Hypertension/metabolism , Male , Nociception/drug effects , Ovary , Pain/physiopathology , Pain Measurement , Rats, Inbred SHR/metabolism , Rats, Inbred WKY
16.
J Infect Dis ; 219(12): 2015-2025, 2019 05 24.
Article En | MEDLINE | ID: mdl-30715407

Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975-1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.


Encephalitis/metabolism , Flavivirus Infections/metabolism , Flavivirus/pathogenicity , Macrophages/metabolism , Receptors, CCR2/metabolism , Animals , Brain , Brazil , Encephalitis/virology , Female , Flavivirus Infections/virology , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Neurosci Lett ; 699: 189-194, 2019 04 23.
Article En | MEDLINE | ID: mdl-30753913

Tonic immobility (TI) is a temporary state of profound motor inhibition associated with great danger as the attack of a predator. Previous studies carried out in our laboratory evidenced high Fos-IR in the posteroventral region of the medial nucleus of the amygdala (MEA) after induction of the TI response. Here, we investigated the effects of GABAA and GABAB of the MEA on TI duration. Intra-MEA injections of the GABAA agonist muscimol and GABAB agonist baclofen reduced TI response, while intra-MEA injections of the GABAA antagonist bicuculline and GABAB antagonist phaclofen increased the TI response. Moreover, the effects observed with muscimol and baclofen administrations into MEA were blocked by pretreatment with bicuculline and phaclofen (at ineffective doses per se). Finally, the activation of GABAA and GABAB receptors in the MEA did not alter the spontaneous motor activity in the open field test. These data support the role of the GABAergic system of the MEA in the modulation of innate fear.


Corticomedial Nuclear Complex/physiology , GABA-A Receptor Agonists/physiology , GABA-B Receptor Agonists/physiology , Immobility Response, Tonic/physiology , Animals , Baclofen/administration & dosage , Baclofen/analogs & derivatives , Baclofen/antagonists & inhibitors , Baclofen/pharmacology , Bicuculline/administration & dosage , Bicuculline/pharmacology , Corticomedial Nuclear Complex/drug effects , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/pharmacology , GABA-B Receptor Agonists/administration & dosage , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Antagonists/administration & dosage , GABA-B Receptor Antagonists/pharmacology , Guinea Pigs , Immobility Response, Tonic/drug effects , Male , Microinjections , Motor Activity/drug effects , Muscimol/administration & dosage , Muscimol/antagonists & inhibitors , Muscimol/pharmacology
18.
Physiol Behav ; 188: 128-133, 2018 05 01.
Article En | MEDLINE | ID: mdl-29425970

Hydrogen sulfide (H2S) is an endogenous neuromodulator produced mainly by the enzyme cystathionine gamma-lyase (CSE) in peripheral tissues. A pronociceptive role of endogenously produced H2S has been previously reported by our group in a model of orofacial inflammatory pain. Using the established persistent orofacial pain rat model induced by complete Freund's adjuvant (CFA) injection into temporomandibular joint (TMJ), we have now investigated the putative role of endogenous H2S modulating hypernociceptive responses. Additionally, plasmatic extravasation on TMJ was measured following different treatments by Evans blue dye quantification. Thus, rats were submitted to Von Frey and Formalin tests in orofacial region before and after pharmacological inhibition of the CSE-H2S system combined or not with CFA-induced TMJ inflammation. Pretreatment with CSE inhibitor, propargylglycine (PAG; 88.4 µmol/kg) reduced temporomandibular inflammatory pain when injected locally as well as systemically. In particular, local PAG injection seems to be more effective for hypernociceptive responses in orofacial persistent inflammation since its action is evidenced in the majority analyzed periods of the inflammatory process compared to its systemic use. Moreover, local injection seems to act on temporomandibular vascular permeability, evidenced by decreased plasmatic extravasation induced by local PAG administration. Our data are consistent with the notion that the endogenous synthetized gas H2S modulates persistent orofacial pain responses revealing the pharmacological importance of the CSE inhibitor as a possible therapeutic target for their control.


Cystathionine gamma-Lyase/metabolism , Facial Pain/enzymology , Facial Pain/etiology , Inflammation/complications , Inflammation/pathology , Temporomandibular Joint/pathology , Alkynes/therapeutic use , Analysis of Variance , Animals , Enzyme Inhibitors/therapeutic use , Facial Pain/complications , Facial Pain/drug therapy , Freund's Adjuvant/toxicity , Glycine/analogs & derivatives , Glycine/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inflammation/chemically induced , Male , Pain Measurement , Rats , Rats, Wistar , Time Factors , Treatment Outcome
19.
Pflugers Arch ; 453(1): 73-82, 2006 Oct.
Article En | MEDLINE | ID: mdl-16902799

The systemic induction of cytokines and prostaglandins plays a key role in the development of fever. However, whether fever is triggered by local injection of lipopolysaccharide (LPS) and the involvement of locally produced prostaglandins in periodontal tissue has never been assessed. Thus, we tested the hypothesis that the trigeminal nerve is a neuronal pathway that signals the brain during acute periodontitis, and this response involves prostaglandin induction. Rats were given a gingival intra-pouch injection of sterile saline or Escherichia coli lipopolysaccharide, at doses of 10 and 100 microg/kg. Some animals were pre-treated with the local anesthetic mepivacaine or had the peripheral branches of the trigeminal nerves transected. Another group of animals were pre-treated (locally or systemically) with the nonselective inhibitor of cyclooxygenases diclofenac. Body core temperature (T (b)) was measured by means of biotelemetry before and after injections. LPS elicited a dose-dependent increase in T (b), which was abolished by mepivacaine, bilateral transection of the peripheral branches of the trigeminal nerve, or local treatment with diclofenac. The results indicate that there is an activation of periodontal nerves to induce fever by LPS. It also shows that local formation of prostaglandins plays a role in fever development. Moreover, immunohistochemistry detected c-fos expression in the subnucleus caudalis of spinal trigeminal nucleus and in the preoptic area of the hypothalamus 2 and 3 h after LPS injection, further confirming the role of trigeminal nerve signaling brain in acute periodontitis.


Dinoprostone/physiology , Fever/physiopathology , Periodontitis/physiopathology , Trigeminal Nerve/physiopathology , Animals , Brain/physiopathology , Lipopolysaccharides , Male , Neural Pathways/physiopathology , Preoptic Area/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Trigeminal Nerve/metabolism
...