Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Emerg Infect Dis ; 29(7): 1455-1458, 2023 07.
Article En | MEDLINE | ID: mdl-37279517

Drowned organ donors can be exposed to environmental molds through the aspiration of water; transplantation of exposed organs can cause invasive mold infections in recipients. We describe 4 rapidly fatal cases of potentially donor-derived invasive mold infections in the United States, highlighting the importance of maintaining clinical suspicion for these infections in transplant recipients.


Fungi , Organ Transplantation , Humans , United States/epidemiology , Tissue Donors , Transplant Recipients , Organ Transplantation/adverse effects
2.
Open Forum Infect Dis ; 8(2): ofaa636, 2021 Feb.
Article En | MEDLINE | ID: mdl-33575421

We report a case of Rickettsia honei infection in a US tourist returning from India and the Himalayas. This case highlights a need for awareness of various Rickettsia species endemic to India and the importance for physicians to consider rickettsial diseases in returning travelers with eschar or rash-associated febrile illnesses.

3.
J Infect Dis ; 223(5): 752-764, 2021 03 03.
Article En | MEDLINE | ID: mdl-33502471

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case patients (age range, 1 month to 84 years; 21 COVID-19 confirmed, 43 suspected COVID-19) by SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR). For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in situ hybridization (ISH), subgenomic RNA RT-PCR, and whole-genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case patients (21 COVID-19 confirmed, 11 suspected). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes, and macrophages of lungs; epithelial cells of airways; and endothelial cells and vessel walls of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. The D614G variant was detected in 9 RT-PCR-positive case patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes.


COVID-19/virology , Endothelium, Vascular/virology , Respiratory System/virology , SARS-CoV-2/physiology , Virus Replication , Adolescent , Adult , Aged , Aged, 80 and over , Autopsy , COVID-19/complications , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Humans , In Situ Hybridization , Infant , Lung/virology , Male , Middle Aged , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Tropism , Whole Genome Sequencing , Young Adult
...