Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Adv ; 8(39): eabp8416, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36179021

RESUMEN

Cell migration is essential to living organisms and deregulated in cancer. Single cell's migration ranges from traction-dependent mesenchymal motility to contractility-driven propulsive amoeboid locomotion, but collective cell migration has only been described as a focal adhesion-dependent and traction-dependent process. Here, we show that cancer cell clusters, from patients and cell lines, migrate without focal adhesions when confined into nonadhesive microfabricated channels. Clusters coordinate and behave like giant super cells, mobilizing their actomyosin contractility at the rear to power their migration. This polarized cortex does not sustain persistent retrograde flows, of cells or actin, like in the other modes of migration but rather harnesses fluctuating cell deformations, or jiggling. Theoretical physical modeling shows this is sufficient to create a gradient of friction forces and trigger directed cluster motion. This collective amoeboid mode of migration could foster metastatic spread by enabling cells to cross a wide spectrum of environments.

2.
Cells ; 12(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36611824

RESUMEN

Collective behavior of cells emerges from coordination of cell-cell-interactions and is important to wound healing, embryonic and tumor development. Depending on cell density and cell-cell interactions, a transition from a migratory, fluid-like unjammed state to a more static and solid-like jammed state or vice versa can occur. Here, we analyze collective migration dynamics of astrocytes and glioblastoma cells using live cell imaging. Furthermore, atomic force microscopy, traction force microscopy and spheroid generation assays were used to study cell adhesion, traction and mechanics. Perturbations of traction and adhesion were induced via ROCK or myosin II inhibition. Whereas astrocytes resided within a non-migratory, jammed state, glioblastoma were migratory and unjammed. Furthermore, we demonstrated that a switch from an unjammed to a jammed state was induced upon alteration of the equilibrium between cell-cell-adhesion and tension from adhesion to tension dominated, via inhibition of ROCK or myosin II. Such behavior has implications for understanding the infiltration of the brain by glioblastoma cells and may help to identify new strategies to develop anti-migratory drugs and strategies for glioblastoma-treatment.


Asunto(s)
Glioblastoma , Humanos , Astrocitos , Movimiento Celular , Adhesión Celular , Comunicación Celular , Proteínas del Citoesqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA