Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Plant Genome ; 16(4): e20374, 2023 Dec.
Article En | MEDLINE | ID: mdl-37596724

Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem. In this study, we tested the potential of structural variant (SV)- and k-mer-based GWAS in soybean by applying these methods as well as conventional SNP/indel-based GWAS to 13 traits. We assessed the performance of each GWAS approach based on loci for which the causal genes or variants were known from previous genetic studies. We found that k-mer-based GWAS was the most versatile approach and the best at pinpointing causal variants or candidate genes. Moreover, k-mer-based analyses identified promising candidate genes for loci related to pod color, pubescence form, and resistance to Phytophthora sojae. In our dataset, SV-based GWAS did not add value compared to k-mer-based GWAS and may not be worth the time and computational resources invested. Despite promising results, significant challenges remain regarding the downstream analysis of k-mer-based GWAS. Notably, better methods are needed to associate significant k-mers with sequence variation. Our results suggest that coupling k-mer- and SNP/indel-based GWAS is a powerful approach for discovering candidate genes in crop species.


Genome-Wide Association Study , Glycine max , Genome-Wide Association Study/methods , Glycine max/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide
2.
Genes (Basel) ; 14(7)2023 07 13.
Article En | MEDLINE | ID: mdl-37510343

Genome-wide association studies (GWAS) have allowed the discovery of marker-trait associations in crops over recent decades. However, their power is hampered by a number of limitations, with the key one among them being an overreliance on single-nucleotide polymorphisms (SNPs) as molecular markers. Indeed, SNPs represent only one type of genetic variation and are usually derived from alignment to a single genome assembly that may be poorly representative of the population under study. To overcome this, k-mer-based GWAS approaches have recently been developed. k-mer-based GWAS provide a universal way to assess variation due to SNPs, insertions/deletions, and structural variations without having to specifically detect and genotype these variants. In addition, k-mer-based analyses can be used in species that lack a reference genome. However, the use of k-mers for GWAS presents challenges such as data size and complexity, lack of standard tools, and potential detection of false associations. Nevertheless, efforts are being made to overcome these challenges and a general analysis workflow has started to emerge. We identify the priorities for k-mer-based GWAS in years to come, notably in the development of user-friendly programs for their analysis and approaches for linking significant k-mers to sequence variation.


Genome-Wide Association Study , Genome , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Front Plant Sci ; 13: 887553, 2022.
Article En | MEDLINE | ID: mdl-35557742

The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.

4.
Methods Mol Biol ; 2481: 161-172, 2022.
Article En | MEDLINE | ID: mdl-35641764

Structural variants (SVs) are known to have large functional impacts on phenotypes of agricultural interest, but they have yet to be routinely used for GWAS. Apart from the difficulty in obtaining high-quality SV genotype data for large populations, one of the main hurdles to using SVs for GWAS lies in formatting of genotype data for use with popular GWAS programs. This protocol describes how typical SV genotype data can be formatted for input to three GWAS programs commonly used by the plant genetics community: TASSEL, GAPIT, and mrMLM.


Genome-Wide Association Study , Genome-Wide Association Study/methods , Genotype , Phenotype
5.
BMC Biol ; 20(1): 53, 2022 02 23.
Article En | MEDLINE | ID: mdl-35197050

BACKGROUND: Structural variants (SVs), including deletions, insertions, duplications, and inversions, are relatively long genomic variations implicated in a diverse range of processes from human disease to ecology and evolution. Given their complex signatures, tendency to occur in repeated regions, and large size, discovering SVs based on short reads is challenging compared to single-nucleotide variants. The increasing availability of long-read technologies has greatly facilitated SV discovery; however, these technologies remain too costly to apply routinely to population-level studies. Here, we combined short-read and long-read sequencing technologies to provide a comprehensive population-scale assessment of structural variation in a panel of Canadian soybean cultivars. RESULTS: We used Oxford Nanopore long-read sequencing data (~12× mean coverage) for 17 samples to both benchmark SV calls made from Illumina short-read data and predict SVs that were subsequently genotyped in a population of 102 samples using Illumina data. Benchmarking results show that variants discovered using Oxford Nanopore can be accurately genotyped from the Illumina data. We first use the genotyped deletions and insertions for population genetics analyses and show that results are comparable to those based on single-nucleotide variants. We observe that the population frequency and distribution within the genome of deletions and insertions are constrained by the location of genes. Gene Ontology and PFAM domain enrichment analyses also confirm previous reports that genes harboring high-frequency deletions and insertions are enriched for functions in defense response. Finally, we discover polymorphic transposable elements from the deletions and insertions and report evidence of the recent activity of a Stowaway MITE. CONCLUSIONS: We show that structural variants discovered using Oxford Nanopore data can be genotyped with high accuracy from Illumina data. Our results demonstrate that long-read and short-read sequencing technologies can be efficiently combined to enhance SV analysis in large populations, providing a reusable framework for their study in a wider range of samples and non-model species.


Nanopores , Canada , DNA Transposable Elements/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Nucleotides , Sequence Analysis, DNA , Glycine max/genetics
6.
Plant Biotechnol J ; 19(9): 1852-1862, 2021 09.
Article En | MEDLINE | ID: mdl-33942475

Studies on structural variation in plants have revealed the inadequacy of a single reference genome for an entire species and suggest that it is necessary to build a species-representative genome called a pan-genome to better capture the extent of both structural and nucleotide variation. Here, we present a pan-genome of cultivated soybean (Glycine max), termed PanSoy, constructed using the de novo genome assembly of 204 phylogenetically and geographically representative improved accessions selected from the larger GmHapMap collection. PanSoy uncovers 108 Mb (˜11%) of novel nonreference sequences encompassing 3621 protein-coding genes (including 1659 novel genes) absent from the soybean 'Williams 82' reference genome. Nonetheless, the core genome represents an exceptionally large proportion of the genome, with >90.6% of genes being shared by >99% of the accessions. A majority of PAVs encompassing genes could be confirmed with long-read sequencing on a subset of accessions. The PanSoy is a major step towards capturing the extent of genetic variation in cultivated soybean and provides a resource for soybean genomics research and breeding.


Fabaceae , Glycine max , Genome, Plant/genetics , Genomics , Plant Breeding , Glycine max/genetics
7.
Plant Direct ; 4(12): e00289, 2020 Dec.
Article En | MEDLINE | ID: mdl-36406053

Microspore embryogenesis is a model for developmental plasticity and cell fate decisions. To investigate the role of miRNAs in this development, we sequenced sRNAs and the degradome of barley microspores collected prior to (day 0) and after (days 2 and 5) the application of a stress treatment known to induce embryogenesis. Microspores isolated at these timepoints were uniform in both appearance and in their complements of sRNAs. We detected 68 miRNAs in microspores. The abundance of 51 of these miRNAs differed significantly during microspore development. One group of miRNAs was induced when the stress treatment was applied, prior to being repressed when microspores transitioned to embryogenesis. Another group of miRNAs were up-regulated in day-2 microspores and their abundance remained stable or increased in day-5 microspores, a timepoint at which the first clear indications of the transition toward embryogenesis were visible. Collectively, these miRNAs might play a role in the modulation of the stress response, the repression of gametic development, and/or the gain of embryogenic potential. A degradome analysis allowed us to validate the role of miRNAs in regulating 41 specific transcripts. We showed that the transition of microspores toward the embryogenesis pathway involves miRNA-directed regulation of members of the ARF, SPL, GRF, and HD-ZIPIII transcription factor families. We noted that 41.5% of these targets were shared between day-2 and day-5 microspores while 26.8% were unique to day-5 microspores. The former set may act to disrupt transcripts involved in pollen development while the latter set may drive the commitment to embryogenesis.

8.
BMC Genomics ; 20(1): 634, 2019 Aug 06.
Article En | MEDLINE | ID: mdl-31387530

BACKGROUND: The effective use of mutant populations for reverse genetic screens relies on the population-wide characterization of the induced mutations. Genome- and population-wide characterization of the mutations found in fast neutron populations has been hindered, however, by the wide range of mutations generated and the lack of affordable technologies to detect DNA sequence changes. In this study, we therefore aimed to test whether genotyping-by-sequencing (GBS) technology could be used to characterize copy number variation (CNV) induced by fast neutrons in a soybean mutant population. RESULTS: We called CNVs from GBS data in 79 soybean mutants and assessed the sensitivity and precision of this approach by validating our results against array comparative genomic hybridization (aCGH) data for 19 of these mutants as well as targeted PCR and ddPCR assays for a representative subset of the smallest events detected by GBS. Our GBS pipeline detected 55 of the 96 events found by aCGH, with approximate detection thresholds of 60 kb, 500 kb and 1 Mb for homozygous deletions, hemizygous deletions and duplications, respectively. Among the whole set of 79 mutants, the GBS data revealed 105 homozygous deletions, 32 hemizygous deletions and 19 duplications. This included several extremely large events, exhibiting maximum sizes of ~ 11.2 Mb for a homozygous deletion, ~ 11.6 Mb for a hemizygous deletion, and ~ 50 Mb for a duplication. CONCLUSIONS: This study provides a proof of concept that GBS can be used as an affordable high-throughput method for assessing CNVs in fast neutron mutants. The modularity of this GBS approach allows combining as many different libraries or sequencing runs as is necessary for reaching the goals of a particular study. This method should enable the low-cost genome-wide characterization of hundreds to thousands of individuals in fast neutron mutant populations or any population with large genomic deletions and duplications.


DNA Copy Number Variations , DNA Mutational Analysis , Fast Neutrons , Genotyping Techniques , Glycine max/genetics , Mutation , Mutagenesis
9.
Plant Genome ; 12(3): 1-11, 2019 11.
Article En | MEDLINE | ID: mdl-33016581

CORE IDEAS: A gene-centric approach for haplotype definition was developed and implemented in R. The tool allows for allelic characterization at given loci in germplasm collections. Allelic status at four maturity genes is predicted on the basis of marker genotyping data. Assessing the allelic diversity within a germplasm collection and identifying individuals carrying favorable alleles is challenging. Advances in high-throughput technologies allow the genotyping of many individuals for thousands of markers but bridging the gap between single nucleotide polymorphisms (SNPs) and relevant alleles remains difficult. We developed a systematic approach that defines haplotypes from large SNP catalogs that aims to identify haplotypes that can be equated to alleles at given genes. Unlike haplotype visualization tools, our approach selects SNP markers that flank a gene and define haplotypes that correspond to this gene's alleles. We tested this approach on four known soybean [Glycine max (L.) Merr.] maturity genes (E1, GmGia, GmPhyA3, and GmPhyA2) in a collection of 67 lines and two genotypic datasets [a SNP array and genotyping-by-sequencing (GBS)]. For E1, GmGia, and GmPhyA3, we identified SNP haplotypes such that the allele found at these genes could be accurately predicted from the haplotype in 97.3% of the cases. For these genes, of the 12 known alleles in the collection, 10 and 8 could be correctly predicted from the haplotypes found with the SNP array and GBS datasets, with success rates of 98 and 97% for all allele-line combinations, respectively. The approach proved equally successful for data derived from a SNP array and GBS. However, in the case of GmPhyA2, a lack of markers in the genomic region prevented the identification of alleles, regardless of the dataset. We demonstrate the feasibility and reproducibility of our approach and identify limits to its applicability.


Polymorphism, Single Nucleotide , Alleles , Genotype , Haplotypes , Humans , Reproducibility of Results
10.
Am J Bot ; 102(3): 390-5, 2015 Mar.
Article En | MEDLINE | ID: mdl-25784472

UNLABELLED: • PREMISE OF THE STUDY: Assessing seed quality in orchids has been hindered by stringent germination requirements. Seed quality has traditionally been assessed in orchids using in vitro or in situ germination protocols or viability staining. However, these methods are not always well suited for rapid assessment of viability in the context of ecological studies.• METHODS: The potential of an ex situ protocol for seed viability assessment of orchids in ecological studies was investigated by sowing seeds of Platanthera blephariglottis on Sphagnum moss collected in the orchid's natural habitat. Ex situ germination results were compared with those obtained by viability staining using triphenyltetrazolium chloride (TTC), and the effect of seed testa color on staining and germination results was investigated.• KEY RESULTS: The ex situ protocol yielded high germination rates, with 66% of the seeds germinating after 9 wk. Depending on the seed testa color class, ex situ germination rates were about 1.4 to 2.5 times higher than viability rates determined using TTC, indicating that the TTC technique underestimated viability compared with the method using ex situ germination. The TTC estimates of viability rates were higher for seeds with dark-colored testae than for pale ones, whereas seed testa color had no effect on germination.• CONCLUSIONS: Our study showed promising results for the use of ex situ germination as an alternative to previously developed protocols for seed viability assessment of orchids in ecological studies. Staining using TTC might not be well suited for this purpose, since it introduced a bias with respect to seed testa color.


Conservation of Natural Resources/methods , Ecology/methods , Germination , Orchidaceae/growth & development , Quebec , Seeds/growth & development
...