Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102754, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442513

RESUMEN

S-acylation is an essential post-translational modification, which is mediated by a family of 23 zDHHC enzymes in humans. Several thousand proteins are modified by S-acylation; however, we lack a detailed understanding of how enzyme-substrate recognition and specificity is achieved. Previous work showed that the ankyrin repeat domain of zDHHC17 (ANK17) recognizes a short linear motif, known as the zDHHC ANK binding motif (zDABM) in substrate protein SNAP25, as a mechanism of substrate recruitment prior to S-acylation. Here, we investigated the S-acylation of the Sprouty and SPRED family of proteins by zDHHC17. Interestingly, although Sprouty-2 (Spry2) contains a zDABM that interacts with ANK17, this mode of binding is dispensable for S-acylation, and indeed removal of the zDABM does not completely ablate binding to zDHHC17. Furthermore, the related SPRED3 protein interacts with and is efficiently S-acylated by zDHHC17, despite lacking a zDABM. We undertook mutational analysis of SPRED3 to better understand the basis of its zDABM-independent interaction with zDHHC17. This analysis found that the cysteine-rich SPR domain of SPRED3, which is the defining feature of all Sprouty and SPRED proteins, interacts with zDHHC17. Surprisingly, the interaction with SPRED3 was independent of ANK17. Our mutational analysis of Spry2 was consistent with the SPR domain of this protein containing a zDHHC17-binding site, and Spry2 also showed detectable binding to a zDHHC17 mutant lacking the ANK domain. Thus, zDHHC17 can recognize its substrates through zDABM-dependent and/or zDABM-independent mechanisms, and some substrates display more than one mode of binding to this enzyme.


Asunto(s)
Aciltransferasas , Proteínas de la Membrana , Animales , Humanos , Ratones , Ratas , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Repetición de Anquirina , Sitios de Unión , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
2.
EMBO J ; 42(3): e111898, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385258

RESUMEN

Di-monoubiquitination of the FANCI-FANCD2 (ID2) complex is a central and crucial step for the repair of DNA interstrand crosslinks via the Fanconi anaemia pathway. While FANCD2 ubiquitination precedes FANCI ubiquitination, FANCD2 is also deubiquitinated at a faster rate than FANCI, which can result in a FANCI-ubiquitinated ID2 complex (IUb D2). Here, we present a 4.1 Å cryo-EM structure of IUb D2 complex bound to double-stranded DNA. We show that this complex, like ID2Ub and IUb D2Ub , is also in the closed ID2 conformation and clamps on DNA. The target lysine of FANCD2 (K561) becomes fully exposed in the IUb D2-DNA structure and is thus primed for ubiquitination. Similarly, FANCI's target lysine (K523) is also primed for ubiquitination in the ID2Ub -DNA complex. The IUb D2-DNA complex exhibits deubiquitination resistance, conferred by the presence of DNA and FANCD2. ID2Ub -DNA, on the other hand, can be efficiently deubiquitinated by USP1-UAF1, unless further ubiquitination on FANCI occurs. Therefore, FANCI ubiquitination effectively maintains FANCD2 ubiquitination in two ways: it prevents excessive FANCD2 deubiquitination within an IUb D2Ub -DNA complex, and it enables re-ubiquitination of FANCD2 within a transient, closed-on-DNA, IUb D2 complex.


Asunto(s)
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Lisina/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Ubiquitinación , ADN/metabolismo , Daño del ADN , Reparación del ADN
3.
FEBS J ; 289(16): 4811-4829, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34137174

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further ubiquitination on FANCI does not alter this closed-on-DNA ID2 conformation. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).


Asunto(s)
Anemia de Fanconi , ADN/metabolismo , Reparación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
4.
J Cell Sci ; 133(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33037124

RESUMEN

Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.


Asunto(s)
Aciltransferasas , Cisteína , Proteínas del Tejido Nervioso/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Membrana Celular/metabolismo , Cisteína/genética , Cisteína/metabolismo , Ratas
5.
EMBO Rep ; 21(7): e50133, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32510829

RESUMEN

The Fanconi anaemia (FA) pathway is a dedicated pathway for the repair of DNA interstrand crosslinks and is additionally activated in response to other forms of replication stress. A key step in the FA pathway is the monoubiquitination of each of the two subunits (FANCI and FANCD2) of the ID2 complex on specific lysine residues. However, the molecular function of these modifications has been unknown for nearly two decades. Here, we find that ubiquitination of FANCD2 acts to increase ID2's affinity for double-stranded DNA via promoting a large-scale conformational change in the complex. The resulting complex encircles DNA, by forming a secondary "Arm" ID2 interface. Ubiquitination of FANCI, on the other hand, largely protects the ubiquitin on FANCD2 from USP1-UAF1 deubiquitination, with key hydrophobic residues of FANCI's ubiquitin being important for this protection. In effect, both of these post-translational modifications function to stabilize a conformation in which the ID2 complex encircles DNA.


Asunto(s)
Anemia de Fanconi , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/genética , Ubiquitinación
6.
PLoS One ; 14(6): e0218185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194809

RESUMEN

Multi-locus sequencing typing (MLST) is widely used to monitor the phylogeny of microbial outbreaks. However, several strains of vancomycin-resistant Enterococcus faecium (VREfm) with a missing MLST locus (pstS) have recently emerged in Australia, with a few cases also reported in England. Here, we identified similarly distinct strains circulating in two neighbouring hospitals in Scotland. Whole genome sequencing of five VREfm strains isolated from these hospitals identified four pstS-null strains in both hospitals, while the fifth was multi-locus sequence type (ST) 262, which is the first documented in the UK. All five Scottish isolates had an insertion in the tetM gene, which is associated with increased susceptibility to tetracyclines, providing no other tetracycline-resistant gene is present. Such an insertion, which encompasses a dfrG gene and two currently uncharacterised genes, was additionally identified in all tested vanA-type pstS-null VREfm strains (5 English and 68 Australian). Phylogenetic comparison with other VREfm genomes indicates that the four pstS-null Scottish isolates sequenced in this study are more closely related to pstS-null strains from Australia rather than the English pstS-null isolates. Given how rapidly such pstS-null strains have expanded in Australia, the emergence of this clone in Scotland raises concerns for a potential outbreak.


Asunto(s)
Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Enterococos Resistentes a la Vancomicina/genética , Vancomicina/uso terapéutico , Antibacterianos/uso terapéutico , Australia , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/genética , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Inglaterra , Genotipo , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Tipificación de Secuencias Multilocus/métodos , Filogenia , Escocia
7.
J Biol Chem ; 292(42): 17190-17202, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28882895

RESUMEN

zDHHC S-acyltransferases are enzymes catalyzing protein S-acylation, a common post-translational modification on proteins frequently affecting their membrane targeting and trafficking. The ankyrin repeat (AR) domain of zDHHC17 (HIP14) and zDHHC13 (HIP14L) S-acyltransferases, which is involved in both substrate recruitment and S-acylation-independent functions, was recently shown to bind at least six proteins, by specific recognition of a consensus sequence in them. To further refine the rules governing binding to the AR of zDHHC17, we employed peptide arrays based on zDHHC AR-binding motif (zDABM) sequences of synaptosomal-associated protein 25 (SNAP25) and cysteine string protein α (CSPα). Quantitative comparisons of the binding preferences of 400 peptides allowed us to construct a position-specific scoring matrix (PSSM) for zDHHC17 AR binding, with which we predicted and subsequently validated many putative zDHHC17 interactors. We identified 95 human zDABM sequences with unexpected versatility in amino acid usage; these sequences were distributed among 90 proteins, of which 62 have not been previously implicated in zDHHC17/13 binding. These zDABM-containing proteins included all family members of the SNAP25, sprouty, cornifelin, ankyrin, and SLAIN-motif containing families; seven endogenous Gag polyproteins sharing the same binding sequence; and several proteins involved in cytoskeletal organization, cell communication, and regulation of signaling. A dozen of the zDABM-containing proteins had more than one zDABM sequence, whereas isoform-specific binding to the AR of zDHHC17 was identified for the Ena/VASP-like protein. The large number of zDABM sequences within the human proteome suggests that zDHHC17 may be an interaction hub regulating many cellular processes.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Aciltransferasas/química , Proteínas Adaptadoras Transductoras de Señales/química , Repetición de Anquirina , Línea Celular , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Péptidos/química , Péptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Proteoma/química , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo
8.
Biochem Soc Trans ; 45(3): 751-758, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620036

RESUMEN

S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.


Asunto(s)
Aciltransferasas/metabolismo , Acilación , Animales , Cisteína/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato
9.
J Biol Chem ; 290(36): 21939-50, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26198635

RESUMEN

S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7-24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington's disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs.


Asunto(s)
Aciltransferasas/genética , Secuencias de Aminoácidos/genética , Repetición de Anquirina/genética , Dedos de Zinc/genética , Acilación , Aciltransferasas/clasificación , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Bovinos , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteína Huntingtina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Filogenia , Unión Proteica , Ratas , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
10.
Biochem Soc Trans ; 43(2): 217-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849920

RESUMEN

The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.


Asunto(s)
Acilación/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Humanos , Familia de Multigenes/genética , Especificidad por Sustrato
11.
Mol Biol Cell ; 25(24): 3870-83, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25253725

RESUMEN

S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins-synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes.


Asunto(s)
Aciltransferasas/metabolismo , Cisteína/metabolismo , Ácidos Grasos/metabolismo , Aparato de Golgi/metabolismo , Acetiltransferasas , Acilación , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Unión Competitiva , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Especificidad por Sustrato , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
12.
Biochem Soc Trans ; 41(1): 62-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23356259

RESUMEN

Palmitoylation, the attachment of palmitate and other fatty acids on to cysteine residues, is a common post-translational modification of both integral and peripheral membrane proteins. Dynamic palmitoylation controls the intracellular distribution of peripheral membrane proteins by regulating membrane-cytosol exchange and/or by modifying the flux of the proteins through vesicular transport systems.


Asunto(s)
Lipoilación , Proteínas de la Membrana/metabolismo , Ácido Palmítico/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Fracciones Subcelulares , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteínas ras/metabolismo
13.
J Biol Chem ; 287(44): 37330-9, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22902780

RESUMEN

Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Lipoilación , Proteínas de la Membrana/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/genética , Procesamiento Proteico-Postraduccional , Aciltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Corteza Cerebral/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Lipofuscinosis Ceroideas Neuronales/metabolismo , Células PC12 , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Ratas
14.
Cell Cycle ; 10(19): 3300-10, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21926477

RESUMEN

The Fanconi anaemia (FA) pathway is a DNA-damage inducible pathway critical for genomic stability. FA patients typically display high cancer susceptibility and hypersensitivity to DNA-damaging agents such as cross-linkers and ionizing radiation. A key step in the activation of the FA pathway is monoubiquitination of the FancD2 protein. Here we report that the FA pathway is downregulated by two distinct mechanisms upon differentiation of THP-1 and HL-60 leukaemia cells into macrophages. Firstly, qRT-PCR analysis revealed a transcriptional downregulation of most components of the FA complex, including FancD2. Secondly, DNA damage-induced monoubiquitination of the remaining FancD2 became deficient at various stages of differentiation depending on the type of damage. This was attributed to the differentiation-induced downregulation of Chk1, which phosphorylates FancD2 as a prelude to its ubiquitination. Although Western blotting revealed that levels of FancD2 were greatly reduced in terminally differentiated macrophages and that FancD2 ubiquitination was abolished, double-strand breaks were proficiently repaired, likely through an increase in non-homologous end joining (NHEJ). It has been suggested that the FA pathway promotes repair of double-strand breaks via homologous recombination rather than NHEJ. Its downregulation in macrophages may thus be required to avoid promoting a repair mechanism that is inefficient in post-mitotic cells.


Asunto(s)
Diferenciación Celular , Regulación hacia Abajo , Anemia de Fanconi/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Reparación del ADN por Unión de Extremidades , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Recombinación Homóloga , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Ubiquitinación
15.
Blood ; 117(23): 6277-86, 2011 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-21478426

RESUMEN

Faithful repair of DNA lesions is a crucial task that dividing cells must actively perform to maintain genome integrity. Strikingly, nucleotide excision repair (NER), the most versatile DNA repair system, is specifically down-regulated in terminally differentiated cells. This prompted us to examine whether NER attenuation might be a common feature of all G0-arrested cells, and in particular of those that retain the capacity to reenter cell cycle and might thus convert unrepaired DNA lesions into mutations, a prerequisite for malignant transformation. Here we report that quiescent primary human B lymphocytes down-regulate NER at the global genome level while maintaining proficient repair of constitutively expressed genes. Quiescent B cells exposed to an environment that causes both DNA damage and proliferation accumulate point mutations in silent and inducible genes crucial for cell replication and differentiation, such as BCL6 and Cyclin D2. Similar to differentiated cells, NER attenuation in quiescent cells is associated with incomplete phosphorylation of the ubiquitin activating enzyme Ube1, which is required for proficient NER. Our data establish a mechanistic link between NER attenuation during quiescence and cell mutagenesis and also support the concept that oncogenic events targeting cell cycle- or activation-induced genes might initiate genomic instability and lymphomagenesis.


Asunto(s)
Linfocitos B/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Regulación hacia Abajo/genética , Genoma Humano , Mutagénesis , Mutación , Fase de Descanso del Ciclo Celular/genética , Linfocitos B/citología , Ciclina D2/genética , Ciclina D2/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Proto-Oncogénicas c-bcl-6 , Enzimas Activadoras de Ubiquitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...