Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
bioRxiv ; 2023 Mar 28.
Article En | MEDLINE | ID: mdl-37034663

Treatments for reproductive disorders in women primarily consist of hormone replacement therapy, which can have negative health impacts. Bidirectional communication between sensory neurons and innervated organs is an emerging area of interest in tissue physiology with potential relevance for reproductive disorders. Indeed, the metabolic activity of sensory neurons can have profound effects on reproductive phenotypes. To investigate this phenomenon, we utilized a murine model with conditional deletion in sensory neurons of liver kinase B1 (LKB1), a serine/threonine kinase that regulates cellular metabolism. Female mice with this LKB1 deletion (Nav1.8cre;LKB1fl/fl) had significantly more pups per litter compared to wild-type females. Interestingly, the LKB1 genotype of male breeders had no effect on fertility outcomes, thus indicating a female-specific role of sensory neuron metabolism in fertility. LKB1 deletion in sensory neurons resulted in reduced ovarian innervation from dorsal root ganglia neurons and increased follicular turnover compared to littermate controls. In summary, LKB1 expression in peripheral sensory neurons plays an important role in modulating fertility of female mice via ovarian sensory innervation.

2.
Mol Pain ; 19: 17448069221110691, 2023.
Article En | MEDLINE | ID: mdl-35712872

Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by TH2-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory Thelper-cells (CD4+ FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8+ T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.


Fibromyalgia , T-Lymphocytes, Regulatory , Female , Mice , Animals , Interleukin-5/adverse effects , Myalgia , Cytokines , Chronic Disease
3.
Neurobiol Aging ; 123: 129-144, 2023 03.
Article En | MEDLINE | ID: mdl-36577640

Surgical procedures in the geriatric population are steadily increasing, driven by improved healthcare technologies and longer lifespans. However, effective postoperative pain treatments are lacking, and this diminishes quality of life and recovery. Here we present one of the first preclinical studies to pursue sex- and age-specific differences in postoperative neuroimmune phenotypes and pain. We found that aged males, but not females, had a delayed onset of mechanical hypersensitivity post-surgery and faster resolution than young counterparts. This sex-specific age effect was accompanied by decreased paw innervation and increased local inflammation. Additionally, we find evidence of an age-dependent decrease in hyperalgesic priming and perioperative changes in nociceptor populations and spinal microglia in the aged. These findings suggest that impaired neuronal function and maladaptive inflammatory mechanisms influence postoperative pain development in advanced age. Elucidation of these neuroimmune phenotypes across age and sex enables the development of novel therapies that can be tailored for improved pain relief.


Hyperalgesia , Quality of Life , Aged , Humans , Male , Female , Pain, Postoperative/etiology
4.
Sci Rep ; 12(1): 14840, 2022 09 01.
Article En | MEDLINE | ID: mdl-36050326

Understanding the interactions between diet, obesity, and diabetes is important to tease out mechanisms in painful pathology. Western diet is rich in fats, producing high amounts of circulating bioactive metabolites. However, no research has assessed how a high-fat diet (HFD) alone may sensitize an individual to non-painful stimuli in the absence of obesity or diabetic pathology. To investigate this, we tested the ability of a HFD to stimulate diet-induced hyperalgesic priming, or diet sensitization in male and female mice. Our results revealed that 8 weeks of HFD did not alter baseline pain sensitivity, but both male and female HFD-fed animals exhibited robust mechanical allodynia when exposed to a subthreshold dose of intraplantar Prostaglandin E2 (PGE2) compared to mice on chow diet. Furthermore, calcium imaging in isolated primary sensory neurons of both sexes revealed HFD induced an increased percentage of capsaicin-responsive neurons compared to their chow counterparts. Immunohistochemistry (IHC) showed a HFD-induced upregulation of ATF3, a neuronal marker of injury, in lumbar dorsal root ganglia (DRG). This suggests that a HFD induces allodynia in the absence of a pre-existing condition or injury via dietary components. With this new understanding of how a HFD can contribute to the onset of pain, we can understand the dissociation behind the comorbidities associated with obesity and diabetes to develop pharmacological interventions to treat them more efficiently.


Diabetes Mellitus , Diet, High-Fat , Animals , Diabetes Mellitus/metabolism , Diet, High-Fat/adverse effects , Female , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Pain/metabolism
5.
Pain Med ; 23(10): 1690-1707, 2022 09 30.
Article En | MEDLINE | ID: mdl-35325207

Fibromyalgia (FM) is a chronic pain disorder characterized by chronic widespread musculoskeletal pain (CWP), resting pain, movement-evoked pain (MEP), and other somatic symptoms that interfere with daily functioning and quality of life. In clinical studies, this symptomology is assessed, while preclinical models of CWP are limited to nociceptive assays. The aim of the study was to investigate the human-to-model translatability of clinical behavioral assessments for spontaneous (or resting) pain and MEP in a preclinical model of CWP. For preclinical measures, the acidic saline model of FM was used to induce widespread muscle pain in adult female mice. Two intramuscular injections of acidic or neutral pH saline were administered following baseline measures, 5 days apart. An array of adapted evoked and spontaneous pain measures and functional assays were assessed for 3 weeks. A novel paradigm for MEP assessment showed increased spontaneous pain following activity. For clinical measures, resting and movement-evoked pain and function were assessed in adult women with FM. Moreover, we assessed correlations between the preclinical model of CWP and in women with fibromyalgia to examine whether similar relationships between pain assays that comprise resting and MEP existed in both settings. For both preclinical and clinical outcomes, MEP was significantly associated with mechanical pain sensitivity. Preclinically, it is imperative to expand how the field assesses spontaneous pain and MEP when studying multi-symptom disorders like FM. Targeted pain assessments to match those performed clinically is an important aspect of improving preclinical to clinical translatability of animal models.


Chronic Pain , Fibromyalgia , Musculoskeletal Pain , Adult , Animals , Female , Fibromyalgia/diagnosis , Humans , Mice , Pain Measurement , Quality of Life
7.
Brain Behav Immun ; 97: 42-60, 2021 10.
Article En | MEDLINE | ID: mdl-34174335

Recent studies have brought to light the necessity to discern sex-specific differences in various pain states and different cell-types that mediate these differences. These studies have uncovered the role of neuroimmune interactions to mediate pain states in a sex-specific fashion. While investigating immune function in pain development, we discovered that females utilize immune components of sensory neurons to mediate neuropathic pain development. We utilized two novel transgenic mouse models that eitherrestore expression of toll-like receptor (TLR) 4 inNav1.8 nociceptors on a TLR4-null background (TLR4LoxTB) or remove TLR4 specifically from Nav1.8 nociceptors (TLR4fl/fl). After spared nerve injury (SNI), a model of neuropathic injury, we observed a robust female-specific onset of mechanical hypersensitivity in our transgenic animals. Female Nav1.8-TLR4fl/fl knockout animals were less mechanically sensitive than cre-negative TLR4fl/fl littermates. Conversely, female Nav1.8-TLR4LoxTB reactivated animals were as mechanically sensitive as their wild-type counterparts. These sex and cell-specific effects were not recapitulated in male animals of either strain. Additionally, we find the danger associated molecular pattern, high mobility group box-1 (HGMB1), a potent TLR4 agonist, localization and ATF3 expression in females is dependent on TLR4 expression in dorsal root ganglia (DRG) populations following SNI. These experiments provide novel evidence toward sensory neuron specific modulation of pain in a sex-dependent manner.


Hyperalgesia , Neuralgia , Toll-Like Receptor 4 , Animals , Female , Male , Mice , Mice, Transgenic , Sensory Receptor Cells , Toll-Like Receptor 4/genetics
8.
Endocrinology ; 162(8)2021 08 01.
Article En | MEDLINE | ID: mdl-34049389

The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.


Gonadal Steroid Hormones/physiology , Neuroimmunomodulation , Pain/metabolism , Sensory Receptor Cells/physiology , Sex Characteristics , Animals , Humans , Neurosecretory Systems , Pain/immunology
9.
J Endocr Soc ; 5(4): bvab010, 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33733019

The etiology of reproductive disorders correlates with weight gain in patients, but the link between reproduction, diet, and weight has been difficult to translate in rodents. As rates of childhood obesity and reproductive disorders increase, the need to study the effects of weight and diet on adolescent females is key. Previous studies show that female mice are resistant to high-fat diet-induced weight gain, but the mechanisms are unclear. Literature also suggests that ovarian function is essential to resistance in weight gain, as an ovariectomy leads to a weight-gaining phenotype similar to male mice on a high-fat diet. However, reproductive changes that occur in adolescent mice on high-fat diet have not been assessed. Here, we show that regulation of the estrus cycle via progesterone is critical to metabolic homeostasis in female mice on a high-fat diet. Female mice were put on high-fat diet or control diet for 12 weeks starting at 4 weeks of age. Every 4 weeks, their estrus cycle was tracked and fasting glucose was measured. We found that after 4 weeks on high-fat diet, there was no difference in weight between groups, but an increase in time spent in proestrus and estrus in mice on high-fat diet and an increase in serum progesterone during proestrus. These results show that intact females modulate their estrus cycle in response to a high-fat diet as a mechanism of homeostatic regulation of body weight, protecting them from metabolic abnormalities. Understanding the mechanisms behind this protection may yield therapeutic opportunities for treatment of reproductive disorders in adolescent female patients.

10.
Neurobiol Aging ; 98: 173-184, 2021 02.
Article En | MEDLINE | ID: mdl-33302179

Translation regulation in the context of aged-associated inflammation and behavioral impairments is not well characterized. Aged individuals experience lower life quality due to behavioral impairments. In this study, we used young and aged transgenic mice that are unable to activate the cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E) to examine the role of protein translation control in aging, memory, depression, and anxiety. To determine how products of cap-dependent translation play a permissive role in aged-associated inflammation, we assessed levels of pro-inflammatory cytokines in various brain regions involved in the above-mentioned behaviors. We found that functional eIF4E is not necessary for age-related deficits in spatial and short-term memory but is important for depressive and anxiety-like behavior and this is correlated with pro-inflammatory cytokines in discrete brain regions. Thus, we have begun to elucidate a role for eIF4E phosphorylation in the context of aged-related behavioral impairments and chronic low-grade inflammation that may help identify novel immune modulators for therapeutic targets and decrease the burden of self-care among the geriatric population.


Affect , Aging/immunology , Aging/psychology , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , RNA Cap-Binding Proteins/metabolism , Aging/metabolism , Animals , Anxiety/genetics , Brain/metabolism , Cytokines/metabolism , Depression/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Inflammation/genetics , Inflammation Mediators/metabolism , Mice, Transgenic , Phosphorylation
11.
Pain ; 162(5): 1468-1482, 2021 05 01.
Article En | MEDLINE | ID: mdl-33003107

ABSTRACT: Fibromyalgia (FM) is characterized by widespread chronic pain, fatigue, and somatic symptoms. The influence of phenotypic changes in monocytes on symptoms associated with FM is not fully understood. The primary aim of this study was to take a comprehensive whole-body to molecular approach in characterizing relationships between monocyte phenotype and FM symptoms in relevant clinical populations. Lipopolysaccharide-evoked and spontaneous secretion of IL-5 and other select cytokines from circulating monocytes was higher in women with FM compared to women without pain. In addition, greater secretion of IL-5 was significantly associated with pain and other clinically relevant psychological and somatic symptoms of FM. Furthermore, higher levels of pain and pain-related symptoms were associated with a lower percentage of intermediate monocytes (CD14++/CD16+) and a greater percentage of nonclassical monocytes (CD14+/CD16++) in women with FM. Based on findings from individuals with FM, we examined the role of IL-5, an atypical cytokine secreted from monocytes, in an animal model of widespread muscle pain. Results from the animal model show that IL-5 produces analgesia and polarizes monocytes toward an anti-inflammatory phenotype (CD206+). Taken together, our data suggest that monocyte phenotype and their cytokine profiles are associated with pain-related symptoms in individuals with FM. Furthermore, our data show that IL-5 has a potential role in analgesia in an animal model of FM. Thus, targeting anti-inflammatory cytokines such as IL-5 secreted by circulating leukocytes could serve as a promising intervention to control pain and other somatic symptoms associated with FM.


Fibromyalgia , Monocytes , Animals , Female , Fibromyalgia/complications , Humans , Interleukin-5 , Pain/etiology , Phenotype
...