Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38771689

RESUMEN

Advancements in adapting deep convolution architectures for spiking neural networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of multiplication-free inference (MFI) to align with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposes limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in multilayer perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization (BN) to retain MFI compatibility and introduce a spiking patch encoding (SPE) layer to enhance local feature extraction capabilities. As a result, we establish an efficient multistage spiking MLP network that blends effectively global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pretraining or sophisticated SNN training techniques, our network secures a top-one accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model parameters, and simulation steps. An expanded version of our network compares with the performance of the spiking VGG-16 network with a 71.64% top-one accuracy, all while operating with a model capacity 2.1 times smaller. Our findings highlight the potential of our deep SNN architecture in effectively integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells.

2.
PLoS Comput Biol ; 18(3): e1009753, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324886

RESUMEN

Being permanently confronted with an uncertain world, brains have faced evolutionary pressure to represent this uncertainty in order to respond appropriately. Often, this requires visiting multiple interpretations of the available information or multiple solutions to an encountered problem. This gives rise to the so-called mixing problem: since all of these "valid" states represent powerful attractors, but between themselves can be very dissimilar, switching between such states can be difficult. We propose that cortical oscillations can be effectively used to overcome this challenge. By acting as an effective temperature, background spiking activity modulates exploration. Rhythmic changes induced by cortical oscillations can then be interpreted as a form of simulated tempering. We provide a rigorous mathematical discussion of this link and study some of its phenomenological implications in computer simulations. This identifies a new computational role of cortical oscillations and connects them to various phenomena in the brain, such as sampling-based probabilistic inference, memory replay, multisensory cue combination, and place cell flickering.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción , Encéfalo , Simulación por Computador , Redes Neurales de la Computación
3.
Front Neurosci ; 13: 1201, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798400

RESUMEN

The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.

4.
Sci Rep ; 8(1): 10651, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006554

RESUMEN

Spiking networks that perform probabilistic inference have been proposed both as models of cortical computation and as candidates for solving problems in machine learning. However, the evidence for spike-based computation being in any way superior to non-spiking alternatives remains scarce. We propose that short-term synaptic plasticity can provide spiking networks with distinct computational advantages compared to their classical counterparts. When learning from high-dimensional, diverse datasets, deep attractors in the energy landscape often cause mixing problems to the sampling process. Classical algorithms solve this problem by employing various tempering techniques, which are both computationally demanding and require global state updates. We demonstrate how similar results can be achieved in spiking networks endowed with local short-term synaptic plasticity. Additionally, we discuss how these networks can even outperform tempering-based approaches when the training data is imbalanced. We thereby uncover a powerful computational property of the biologically inspired, local, spike-triggered synaptic dynamics based simply on a limited pool of synaptic resources, which enables them to deal with complex sensory data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...