Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 370: 379-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697317

RESUMEN

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Asunto(s)
Vacunas contra el Cáncer , Galactosilceramidas , Ratones Endogámicos C57BL , Nanopartículas , Ovalbúmina , Animales , Galactosilceramidas/administración & dosificación , Galactosilceramidas/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Femenino , Nanopartículas/química , Nanopartículas/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Vacunas de ARNm , Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , ARN Mensajero/administración & dosificación , Ratones , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Lípidos/química , Liposomas
2.
Trends Cancer ; 10(6): 486-489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553361

RESUMEN

Immunogenic cell death (ICD) is emerging as a key component of antitumor therapy that harnesses the immune system of the patient to combat cancer. In recent years, several efforts were made to improve the ICD-based therapies. Here, we discuss how nanomaterial-based strategies increase the efficacy of ICD and highlight their benefits and challenges.


Asunto(s)
Muerte Celular Inmunogénica , Nanomedicina , Neoplasias , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanomedicina/métodos , Inmunoterapia/métodos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
3.
Nano Lett ; 24(10): 2961-2971, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477058

RESUMEN

The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.


Asunto(s)
Liposomas , Nanopartículas , Ratones , Animales , Humanos , Nanopartículas/química , ARN Interferente Pequeño/genética , Colesterol/química
4.
J Mol Biol ; 436(2): 168385, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065276

RESUMEN

Throughout the last decades, mRNA vaccines have been developed as a cancer immunotherapeutic and the technology recently gained momentum during the COVID-19 pandemic. Recent promising results obtained from clinical trials investigating lipid-based mRNA vaccines in cancer therapy further highlighted the potential of this therapy. Interestingly, while the technologies being used in authorized mRNA vaccines for the prevention of COVID-19 are relatively similar, mRNA vaccines in clinical development for cancer vaccination show marked differences in mRNA modification, lipid carrier, and administration route. In this review, we describe findings on how these factors can impact the potency of mRNA vaccines in cancer therapy and provide insights into the complex interplay between them. We discuss how lipid carrier composition can affect passive targeting to immune cells to improve the efficacy and safety of mRNA vaccines. Finally, we summarize strategies that are established or still being explored to improve the efficacy of mRNA cancer vaccines and include next-generation vaccines that are on the horizon in clinical development.


Asunto(s)
Vacunas contra el Cáncer , Lípidos , Neoplasias , Desarrollo de Vacunas , Vacunas de ARNm , Humanos , Neoplasias/terapia , Desarrollo de Vacunas/métodos
5.
J Control Release ; 365: 1019-1036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065413

RESUMEN

The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.


Asunto(s)
Melanoma Experimental , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melaninas , Línea Celular Tumoral , Neoplasias Cutáneas/tratamiento farmacológico , Melanoma Experimental/patología , Muerte Celular
6.
Theranostics ; 13(15): 5483-5500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908728

RESUMEN

Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.


Asunto(s)
Melanoma , Células T Asesinas Naturales , Anticuerpos de Dominio Único , Humanos , Ratones , Animales , Antígeno B7-H1 , Células T Asesinas Naturales/metabolismo , Anticuerpos de Dominio Único/metabolismo , Inhibidores de Puntos de Control Inmunológico/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Vacunas Sintéticas , Melanoma/diagnóstico por imagen , Melanoma/terapia , Microambiente Tumoral , Vacunas de ARNm
7.
J Control Release ; 363: 747-755, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778466

RESUMEN

Sonoporation is the process where intracellular drug delivery is facilitated by ultrasound-driven microbubble oscillations. Several mechanisms have been proposed to relate microbubble dynamics to sonoporation including shear and normal stress. The present work aims to gain insight into the role of microbubble size on sonoporation and thereby into the relevant mechanism(s) of sonoporation. To this end, we measured the sonoporation efficiency while varying microbubble size using monodisperse microbubble suspensions. Sonoporation experiments were performed in vitro on cell monolayers using a single ultrasound pulse with a fixed frequency of 1 MHz while the acoustic pressure amplitude and pulse length were varied at 250, 500, and 750 kPa, and 10, 100, and 1000 cycles, respectively. Sonoporation efficiency was quantified using flow cytometry by measuring the FITC-dextran (4 kDa and 2 MDa) fluorescence intensity in 10,000 cells per experiment to average out inherent variations in the bioresponse. Using ultra-high-speed imaging at 10 million frames per second, we demonstrate that the bubble oscillation amplitude is nearly independent of the equilibrium bubble radius at acoustic pressure amplitudes that induce sonoporation (≥ 500 kPa). However, we show that sonoporation efficiency is strongly dependent on the equilibrium bubble size and that under all explored driving conditions most efficiently induced by bubbles with a radius of 4.7 µm. Polydisperse microbubbles with a typical ultrasound contrast agent size distribution perform almost an order of magnitude lower in terms of sonoporation efficiency than the 4.7-µm bubbles. We elucidate that for our system shear stress is highly unlikely the mechanism of action. By contrast, we show that sonoporation efficiency correlates well with an estimate of the bubble-induced normal stress.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microburbujas , Sistemas de Liberación de Medicamentos/métodos , Ultrasonografía/métodos , Medios de Contraste , Acústica
8.
Nat Nanotechnol ; 18(11): 1341-1350, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37430039

RESUMEN

The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.


Asunto(s)
Artritis Experimental , Liposomas , Animales , Humanos , Liposomas/uso terapéutico , Membrana Sinovial/metabolismo , Artritis Experimental/tratamiento farmacológico , Células Mieloides
9.
J Control Release ; 357: 149-160, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958400

RESUMEN

Messenger RNA (mRNA) lipid nanoparticles (LNPs) have emerged at the forefront during the COVID-19 vaccination campaign. Despite their tremendous success, mRNA vaccines currently require storage at deep freeze temperatures which complicates their storage and distribution, and ultimately leads to lower accessibility to low- and middle-income countries. To elaborate on this challenge, we investigated freeze-drying as a method to enable storage of mRNA LNPs at room- and even higher temperatures. More specifically, we explored a novel continuous freeze-drying technique based on spin-freezing, which has several advantages compared to classical batch freeze-drying including a much shorter drying time and improved process and product quality controlling. Here, we give insight into the variables that play a role during freeze-drying by evaluating the impact of the buffer and mRNA LNP formulation (ionizable lipid to mRNA weight ratio) on properties such as size, morphology and mRNA encapsulation. We found that a sufficiently high ionizable lipid to mRNA weight ratio was necessary to prevent leakage of mRNA during freeze-drying and that phosphate and Tris, but not PBS, were appropriate buffers for lyophilization of mRNA LNPs. We also studied the stability of optimally lyophilized mRNA LNPs at 4 °C, 22 °C, and 37 °C and found that transfection properties of lyophilized mRNA LNPs were maintained during at least 12 weeks. To our knowledge, this is the first study that demonstrates that optimally lyophilized mRNA LNPs can be safely stored at higher temperatures for months without losing their transfection properties.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Temperatura , ARN Mensajero , Vacunas contra la COVID-19 , Liofilización/métodos , Lípidos
10.
Nat Commun ; 13(1): 6075, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241641

RESUMEN

Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Animales , Proteínas Bacterianas/genética , Vacunas Bacterianas/genética , Linfocitos T CD8-positivos , Humanos , Epítopos Inmunodominantes , Liposomas , Listeria/genética , Listeria monocytogenes/genética , Listeriosis/prevención & control , Proteínas de la Membrana , Ratones , Nanopartículas , Vacunas Atenuadas , Vacunas Sintéticas/genética , Vacunas de ARNm
11.
Eur J Pharm Biopharm ; 172: 16-30, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35074555

RESUMEN

Colorectal cancer (CRC) accounts for approximately 10% of all cancer cases worldwide. Conventional treatment has relied on chemotherapy, radiation therapy and surgery with limited success for patients with metastatic CRC. Toll like receptor (TLR) agonists have garnered attention for their ability to stimulate the innate immune system and consequently stimulate production of proinflammatory cytokines and activate an antitumor T cell response. However, activation of TLRs can also result in tumorigenesis and drug resistance depending on the specific TLR and cell that is targeted. Due to these contradictory effects of TLR stimulation, a key challenge is targeting specific cells, such as the dendritic cells or macrophages, to ensure the most optimal result. Additionally, TLR agonists are small molecules that can be cleared rapidly after local administration and can result in severe systemic side effects. This demonstrates the need to develop appropriate nanoparticle delivery systems for TLR agonists that can specifically target the innate immune system as a tool to treat CRC. In this review, the challenges in designing these nanoparticles will be discussed together with the recent advances of nanoparticle formulations containing TLR agonists.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Inmunoterapia , Linfocitos T , Receptores Toll-Like/agonistas
12.
Mol Imaging Biol ; 24(2): 321-332, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060024

RESUMEN

PURPOSE: The pathogenesis of type 1 diabetes (T1D) involves presentation of islet-specific self-antigens by dendritic cells (DCs) to autoreactive T cells, resulting in the destruction of insulin-producing pancreatic beta cells. We aimed to study the dynamic homing of diabetes-prone DCs to the pancreas and nearby organs with and without induction of pancreatic stress in a T1D susceptible model of repeated streptozotocin (STZ) injection. PROCEDURES: In vitro labeling of activated bone marrow-derived DCs (BMDCs) from NOD (Nonobese diabetes) mice was performed using zonyl perfluoro-15-crown-5-ether nanoparticles (ZPFCE-NPs). Internalization of particles was confirmed by confocal microscopy. Two groups of NOD.SCID (nonobese diabetic/severe combined immunodeficiency) mice with (induced by low dose STZ administration) or without pancreatic stress were compared. Diabetogenic BMDCs loaded with BDC2.5 mimotope were pre-labeled with ZPFCE-NPs and adoptively transferred into mice. Longitudinal in vivo fluorine MRI (19F MRI) was performed 24 h, 36 h and 48 h after transfer of BMDCs. For ex vivo quantification of labeled cells, 19F NMR and flow cytometry were performed on dissected tissues to validate in vivo 19F MRI data. RESULTS: In vitro flow cytometry and confocal microscopy confirmed high uptake of nanoparticles in BMDCs during the process of maturation. Migration/homing of activated and ZPFCE-NP- labeled BMDCs to different organs was monitored and quantified longitudinally, showing highest cell density in pancreas at 48-h time-point. Based on 19F MRI, STZ induced mild inflammation in the pancreatic region, as indicated by high accumulation of ZPFCE-NP-labeled BMDCs in the pancreas when compared to the vehicle group. Pancreatic draining lymph nodes showed elevated homing of labeled BMDCs in the vehicle groups in contrast to the STZ group after 72 h. The effect of STZ was confirmed by increased blood glucose levels. CONCLUSION: We showed the potential of 19F MRI for the non-invasive visualization and quantification of migrating immune cells in models for pancreatic inflammation after STZ administration. Without any intrinsic background signal, 19F MRI serves as a highly specific imaging tool to study the migration of diabetic-prone BMDCs in T1D models in vivo. This approach could particularly be of interest for the longitudinal assessment of established or novel anti-inflammatory therapeutic approaches in preclinical models.


Asunto(s)
Diabetes Mellitus Tipo 1 , Fluorocarburos , Animales , Células Dendríticas , Flúor , Inflamación , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estreptozocina
13.
Adv Drug Deliv Rev ; 176: 113900, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34324884

RESUMEN

The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.


Asunto(s)
Amplificación de Genes/inmunología , Inmunidad Innata/inmunología , Inmunoterapia/métodos , ARN Mensajero/inmunología , Vacunas Sintéticas/inmunología , Animales , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , Amplificación de Genes/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunoterapia/tendencias , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas de ARNm
14.
J Control Release ; 333: 511-520, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33798667

RESUMEN

In less than one year since the outbreak of the COVID-19 pandemic, two mRNA-based vaccines, BNT162b2 and mRNA-1273, were granted the first historic authorization for emergency use, while another mRNA vaccine, CVnCoV, progressed to phase 3 clinical testing. The COVID-19 mRNA vaccines represent a new class of vaccine products, which consist of synthetic mRNA strands encoding the SARS-CoV-2 Spike glycoprotein, packaged in lipid nanoparticles to deliver mRNA to cells. This review digs deeper into the scientific breakthroughs of the last decades that laid the foundations for the rapid rise of mRNA vaccines during the COVID-19 pandemic. As well as providing momentum for mRNA vaccines, SARS-CoV-2 represents an ideal case study allowing to compare design-activity differences between the different mRNA vaccine candidates. Therefore, a detailed overview of the composition and (pre)clinical performance of the three most advanced mRNA vaccines is provided and the influence of choices in their structural design on to their immunogenicity and reactogenicity profile is discussed in depth. In addition to the new fundamental insights in the mRNA vaccines' mode of action highlighted here, we also point out which unknowns remain that require further investigation and possibly, optimization in future mRNA vaccine development.


Asunto(s)
COVID-19 , Vacunas , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Pandemias , ARN Mensajero , SARS-CoV-2
15.
Nanoscale ; 13(13): 6592-6604, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885539

RESUMEN

Inflammasomes are multi-protein complexes that guard against cellular stress and microbial infections. Inflammasome activation studies frequently require delivery of pathogen-derived virulence factors into the cytosol of macrophages and other innate immune cells. This is a challenging requirement since primary macrophages are difficult-to-transfect, especially when it comes to the intracellular delivery of proteins. Here, we report on the use of nanoparticle-sensitized photoporation as a promising upcoming intracellular delivery technology for delivering proteins of various molecular weights into the cytosol of primary macrophages. While 60-70 nm gold nanoparticles are the most commonly used sensitizing nanoparticles for photoporation, here we find that 0.5 µm iron oxide nanoparticles perform markedly better on primary macrophages. We demonstrate that LFn-FlaA or lipopolysaccharides can be delivered in primary macrophages resulting in activation of the NLRC4 or the non-canonical inflammasome, respectively. We furthermore show that photoporation can be used for targeted delivery of these toxins into selected cells, opening up the possibility to study the interaction between inflammasome activated cells and surrounding healthy cells. Taken together, these results show that nanoparticle-sensitized photoporation is very well suited to deliver pathogenic virulence factors in primary macrophages, thus constituting an effective new enabling technology for inflammasome activation studies.


Asunto(s)
Inflamasomas , Nanopartículas del Metal , Oro , Lipopolisacáridos , Macrófagos , Nanopartículas del Metal/toxicidad
16.
Biomater Sci ; 9(11): 4005-4018, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899850

RESUMEN

Longitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents. An interesting option is to label cells with clinically approved gadolinium chelates which generate a hyperintense MR signal. However, spontaneous uptake of the label via pinocytosis results in its endosomal sequestration, leading to quenching of the T1-weighted relaxation. To avoid this quenching effect, delivery of gadolinium chelates directly into the cytosol via electroporation or hypotonic cell swelling have been proposed. However, these methods are also accompanied by several drawbacks such as a high cytotoxicity, and changes in gene expression and phenotype. Here, we demonstrate that nanoparticle-sensitized laser induced photoporation forms an attractive alternative to efficiently deliver the contrast agent gadobutrol into the cytosol of both HeLa and SK-OV-3 IP1 cells. After intracellular delivery by photoporation the quenching effect is clearly avoided, leading to a strong increase in the hyperintense T1-weighted MR signal. Moreover, when compared to nucleofection as a state-of-the-art electroporation platform, photoporation has much less impact on cell viability, which is extremely important for reliable cell tracking studies. Additional experiments confirm that photoporation does not induce any change in the long-term viability or the migratory capacity of the cells. Finally, we show that gadolinium 'labeled' SK-OV-3 IP1 cells can be imaged in vivo by MRI with high soft-tissue contrast and spatial resolution, revealing indications of potential tumor invasion or angiogenesis.


Asunto(s)
Gadolinio , Neoplasias , Rastreo Celular , Medios de Contraste , Citosol , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen
17.
Mol Cancer ; 20(1): 48, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658037

RESUMEN

mRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature's core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Neoplasias/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Diseño de Fármacos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Vacunas de ARNm
18.
Expert Opin Drug Deliv ; 18(2): 229-247, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985919

RESUMEN

INTRODUCTION: Dendritic cells (DCs) and macrophages, two important antigen presenting cells (APCs) of the innate immune system, are being explored for the use in cell-based cancer immunotherapy. For this application, the therapeutic potential of patient-derived APCs is increased by delivering different types of functional macromolecules, such as mRNA and pDNA, into their cytosol. Compared to the use of viral and non-viral delivery vectors, physical intracellular delivery techniques are known to be more straightforward, more controllable, faster and generate high delivery efficiencies. AREAS COVERED: This review starts with electroporation as the most traditional physical transfection method, before continuing with the more recent technologies such as sonoporation, nanowires and microfluidic cell squeezing. A description is provided of each of those intracellular delivery technologies with their strengths and weaknesses, especially paying attention to delivery efficiency and safety profile. EXPERT OPINION: Given the common use of electroporation for the production of therapeutic APCs, it is recommended that more detailed studies are performed on the effect of electroporation on APC fitness, even down to the genetic level. Newer intracellular delivery technologies seem to have less impact on APC functionality but further work is needed to fully uncover their suitability to transfect APCs with different types of macromolecules.


Asunto(s)
Células Dendríticas , Electroporación , Humanos , Inmunoterapia , Macrófagos , Transfección
19.
Mol Ther Nucleic Acids ; 20: 777-787, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32438313

RESUMEN

To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fcγ receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment.

20.
Ultrasound Med Biol ; 46(6): 1296-1325, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32165014

RESUMEN

Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Microburbujas , Terapia por Ultrasonido/métodos , Infecciones Bacterianas/terapia , Barrera Hematoencefálica , Fármacos Cardiovasculares/administración & dosificación , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Terapia Trombolítica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...