Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 77(5): 1127-1141, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096174

RESUMEN

IgE antibodies are key mediators of antiparasitic immune responses, but their potential for cancer treatment via antibody-dependent cell-mediated cytotoxicity (ADCC) has been little studied. Recently, tumor antigen-specific IgEs were reported to restrict cancer cell growth by engaging high-affinity Fc receptors on monocytes and macrophages; however, the underlying therapeutic mechanisms were undefined and in vivo proof of concept was limited. Here, an immunocompetent rat model was designed to recapitulate the human IgE-Fcε receptor system for cancer studies. We also generated rat IgE and IgG mAbs specific for the folate receptor (FRα), which is expressed widely on human ovarian tumors, along with a syngeneic rat tumor model expressing human FRα. Compared with IgG, anti-FRα IgE reduced lung metastases. This effect was associated with increased intratumoral infiltration by TNFα+ and CD80+ macrophages plus elevated TNFα and the macrophage chemoattractant MCP-1 in lung bronchoalveolar lavage fluid. Increased levels of TNFα and MCP-1 correlated with IgE-mediated tumor cytotoxicity by human monocytes and with longer patient survival in clinical specimens of ovarian cancer. Monocytes responded to IgE but not IgG exposure by upregulating TNFα, which in turn induced MCP-1 production by monocytes and tumor cells to promote a monocyte chemotactic response. Conversely, blocking TNFα receptor signaling abrogated induction of MCP-1, implicating it in the antitumor effects of IgE. Overall, these findings show how antitumor IgE reprograms monocytes and macrophages in the tumor microenvironment, encouraging the clinical use of IgE antibody technology to attack cancer beyond the present exclusive reliance on IgG. Cancer Res; 77(5); 1127-41. ©2017 AACR.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Receptor 1 de Folato/inmunología , Macrófagos/inmunología , Neoplasias Ováricas/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Línea Celular Tumoral , Femenino , Receptor 1 de Folato/antagonistas & inhibidores , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Ratas , Ratas Wistar , Transducción de Señal , Factor de Necrosis Tumoral alfa/biosíntesis
2.
Biotechnol Prog ; 32(6): 1494-1502, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27604040

RESUMEN

The presence of impurities or contaminants in biological products such as monoclonal antibodies (mAb) could affect efficacy or cause adverse reactions in patients. ICH guidelines (Q6A and Q6B) are in place to regulate the level of impurities within clinical drug products. An impurity less often reported and, therefore, lacking regulatory guideline is beta-glucan. Beta-glucans are polysaccharides of d-glucose monomers linked by (1-3) beta-glycosidic bonds, and are produced by prokaryotic and eukaryotic organisms, including plants. They may enter manufacturing processes via raw materials such as cellulose-based membrane filters or sucrose. Here we report the detection of beta-glucan contamination of a monoclonal IgE antibody (MOv18), manufactured in our facility for a first-in-human, first-in-class clinical trial in patients with cancer. Since beta-glucans have potential immunostimulatory properties and can cause symptomatic infusion reactions, it was of paramount importance to identify the source of beta-glucans in our product and to reduce the levels to clinically insignificant concentrations. We identified beta-glucans in sucrose within the formulation buffer and within the housing storage buffer of the virus removal filter. We also detected low level beta-glucan contamination in two of four commercially available antibodies used in oncology. Both formulation buffers contained sucrose. We managed to reduce levels of beta-glucan in our product 10-fold, by screening all sucrose raw material, filtering the sucrose by Posidyne® membrane filtration, and by incorporating extra wash steps when preparing the virus removal filter. The beta-glucan levels now lie within a range that is unlikely to cause clinically significant immunological effects. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1494-1502, 2016.


Asunto(s)
Inmunoglobulina E/química , Industria Manufacturera/normas , beta-Glucanos/aislamiento & purificación , Inmunoglobulina E/inmunología , beta-Glucanos/química
3.
Cancer Immunol Immunother ; 65(11): 1289-1301, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27473075

RESUMEN

Beta-glucans are large polysaccharides produced by a range of prokaryotic and eukaryotic organisms. They have potential immunostimulatory properties and have been used with therapeutic intent as anti-microbial and anti-tumour agents. A range of other potentially beneficial effects have been described, and oral forms of beta-glucans are widely available over-the-counter and online. Parenteral formulations are popular in parts of Asia and are the subject of ongoing trials, worldwide. Beta-glucans are also potential contaminants of pharmaceutical products, and high levels have been described in some blood products. However, little is known about the clinical effects of such contamination, considerable uncertainty exists over the level at which immunostimulation may occur, and there are no guidelines available on acceptable levels. We encountered beta-glucan contamination of one of our products, and we suspect that others may encounter similar issues since the origin of beta-glucan contamination includes commonly used filters and solutions applied in the manufacture of biotherapeutic agents. It is likely that regulators will increasingly enquire about beta-glucan levels in pharmaceutical products, especially those with an immunomodulatory mechanism of action. Here, we review the literature on beta-glucans in pharmaceutical products and propose an acceptable level for therapeutic agents for parenteral use.


Asunto(s)
Biosimilares Farmacéuticos/metabolismo , Neoplasias/terapia , Preparaciones Farmacéuticas/metabolismo , Medición de Riesgo , beta-Glucanos/metabolismo , Animales , Ensayos Clínicos como Asunto , Humanos , Inmunomodulación , Tecnología Farmacéutica
4.
Lancet ; 385 Suppl 1: S53, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312875

RESUMEN

BACKGROUND: Nearly all anti-tumour antibodies are of a single class-namely, IgG. Efficacy might be improved by development of tumour-specific IgE antibodies, which have higher affinities for effector cell receptors and perform potent immune functions. MOv18IgE, which targets folate receptor α (FRα), is a novel system to model this hypothesis. Human chimeric MOv18 IgE has shown superior efficacy in two murine xenograft models compared with MOv18 IgG1. Our aim was to examine the potential of this antibody class to activate monocytes. METHODS: We developed an immunocompetent rat model system of rat tumour lung metastases expressing human FRα, and engineered surrogate rat MOv18 IgE and IgG antibodies to assess their efficacy and ability to recruit monocytes in the rat model system. FINDINGS: In-vivo assessment of the efficacy of rat MOv18 IgE demonstrated superior tumour growth restriction compared with rat MOv18 IgG (tumour occupancy 6·8% [SE 1·6] vs 16·0 [1·7]; p<0·0001). We measured significant CD68-positive (CD68+) macrophage infiltration of tumours after MOv18 IgE treatment (mean ratio of CD68+ cells in tumour vs periphery 3·6 [0·5] for MOv18 IgE-treated tumours vs 2·3 [0·3] for MOv18 IgG-treated tumours; p=0·03). INTERPRETATION: Our in-vivo studies using rat MOv18 IgE show the importance of monocyte recruitment in the efficacy of this antibody, and provide further evidence that tumour-specific IgE antibodies might offer improved efficacy against cancer by recruiting key immune effector cells. FUNDING: Academy of Medical Sciences Starter Grant, Cancer Research UK New Agents Committee Grant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...