Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(8): 11150-11162, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802475

RESUMEN

Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.

2.
Biomacromolecules ; 23(6): 2697-2712, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35486708

RESUMEN

Biofouling is a major disruptive process affecting the fuel efficiency and durability of maritime vessel coatings. Previous research has shown that amphiphilic coatings consisting of a siloxane backbone functionalized with hydrophilic moieties are effective marine antifouling and fouling-release materials. Poly(ethylene glycol) (PEG) has been the primary hydrophilic component used in such systems. Recently, the morpholine group has emerged as a promising compact alternative in antifouling membranes but is yet to be studied against marine foulants. In this work, the use of morpholine moieties to generate amphiphilicity in a poly(dimethylsiloxane) (PDMS)-based antifouling and fouling-release coating was explored. Two separate coating sets were investigated. The first set examined the incorporation of an N-substituted morpholine amine, and while these coatings showed promising fouling-release properties for Ulva linza, they had unusually high settlement of spores compared to controls. Based on those results, a second set of materials was synthesized using an N-substituted morpholine amide to probe the source of the high settlement and was found to significantly improve antifouling performance. Both coating sets included PEG controls with varying lengths to compare the viability of the morpholine structures as alternative hydrophilic groups. Surfaces were evaluated through a combination of bubble contact angle goniometry, profilometry, X-ray photoelectron spectroscopy (XPS), and marine bioassays against two soft fouling species, U. linza and Navicula incerta, known to have different adhesion characteristics.


Asunto(s)
Incrustaciones Biológicas , Diatomeas , Ulva , Incrustaciones Biológicas/prevención & control , Morfolinas , Polietilenglicoles/química , Propiedades de Superficie
3.
ACS Appl Mater Interfaces ; 14(5): 7340-7349, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089024

RESUMEN

Polymers are commonly used in applications that require long-term exposure to water and aqueous mixtures, serving as water purification membranes, marine antifouling coatings, and medical implants, among many other applications. Because polymer surfaces restructure in response to the surrounding environment, in situ characterization is crucial for providing an accurate understanding of the surface chemistry under conditions of use. To investigate the effects of surface-active side chains on polymer surface chemistry and resultant interactions with interfacial water (i.e., water sorption), we present synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) studies performed on poly(ethylene oxide) (PEO)- and poly(dimethylsiloxane) (PDMS)-based polymer surfaces modified with amphiphilic polypeptoid side chains, previously demonstrated to be efficacious in marine fouling prevention and removal. The polymer backbone and environmental conditions were found to affect polypeptoid surface presentation: due to the surface segregation of its fluorinated polypeptoid monomers under vacuum, the PEO-peptoid copolymer showed significant polypeptoid content in both vacuum and hydrated conditions, while the modified PDMS-based copolymer showed increased polypeptoid content only in hydrated conditions due to the hydrophilicity of the ether monomers and polypeptoid backbone. Polypeptoids were found to bind approximately 2.8 water molecules per monomer unit in both copolymers, and the PEO-peptoid surface showed substantial water sorption that suggests a surface with a more diffuse water/polymer interface. This work implies that side chains are ideal for tuning water affinity without altering the base polymer composition, provided that surface-driving groups are present to ensure activity at the interface. These types of systematic modifications will generate novel polymers that maximize bound interfacial water and can deliver surface-active groups to the surface to improve the effectiveness of polymer materials.

4.
Annu Rev Chem Biomol Eng ; 10: 241-264, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173523

RESUMEN

In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.


Asunto(s)
Organismos Acuáticos/fisiología , Incrustaciones Biológicas/prevención & control , Polímeros/química , Ecosistema , Lubricantes/química , Polímeros/síntesis química , Propiedades de Superficie
5.
ACS Appl Mater Interfaces ; 9(19): 16505-16516, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28429593

RESUMEN

A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...