Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Rep ; 11(1): 12039, 2021 06 08.
Article En | MEDLINE | ID: mdl-34103589

The assessment of a patient's immune function is critical in many clinical situations. In complex clinical immune dysfunction like sepsis, which results from a loss of immune homeostasis due to microbial infection, a plethora of pro- and anti-inflammatory stimuli may occur consecutively or simultaneously. Thus, any immunomodulatory therapy would require in-depth knowledge of an individual patient's immune status at a given time. Whereas lab-based immune profiling often relies solely on quantification of cell numbers, we used an ex vivo whole-blood infection model in combination with biomathematical modeling to quantify functional parameters of innate immune cells in blood from patients undergoing cardiac surgery. These patients experience a well-characterized inflammatory insult, which results in mitigation of the pathogen-specific response patterns towards Staphylococcus aureus and Candida albicans that are characteristic of healthy people and our patients at baseline. This not only interferes with the elimination of these pathogens from blood, but also selectively augments the escape of C. albicans from phagocytosis. In summary, our model could serve as a valuable functional immune assay for recording and evaluating innate responses to infection.


Candida albicans/immunology , Immunity, Innate , Neutrophils/immunology , Phagocytosis , Staphylococcus aureus/immunology , Candidiasis/immunology , Humans , Staphylococcal Infections/immunology
2.
J Immunol ; 203(11): 2959-2969, 2019 12 01.
Article En | MEDLINE | ID: mdl-31619536

The quorum-sensing molecule farnesol is produced by the opportunistic human fungal pathogen Candida albicans Aside from its primary function of blocking the transition from yeast to hyphal morphotype, it has an immunomodulatory role on human dendritic cells (DC) through the alteration of surface markers, cytokine secretion, and their ability to activate T cells. Nonetheless, the molecular mechanisms by which farnesol modulates DC differentiation and maturation remained unknown. In this study, we demonstrate through transcriptional and functional assays that farnesol influences several signaling pathways during DC differentiation and in response to TLR agonists. In particular, farnesol increases the expression of the Ag-presenting glycoprotein CD1d through the nuclear receptors PPARγ and RARα, as well as p38 MAPK. However, the higher expression of CD1d did not confer these DC with an enhanced capacity to activate CD1d-restricted invariant NKT cells. In the presence of farnesol, there is reduced secretion of the Th1-inducing cytokine, IL-12, and increased release of proinflammatory cytokines, as well as the anti-inflammatory cytokine IL-10. These changes are partially independent of nuclear receptor activity but, in the case of TNF-α and IL-10, dependent on NF-κB and MAPK pathways. Interestingly, renewal of the IL-12/IL-10 milieu restores the ability of farnesol-differentiated DC to activate invariant NKT, Th1, and FOXP3+ regulatory T cells. Our results show that farnesol modulates nuclear receptors, NF-κB, and MAPK-signaling pathways, thereby impairing the capacity of DC to activate several T cells subsets and potentially conferring C. albicans, an advantage in overcoming DC-mediated immunity.


Candida albicans/drug effects , Dendritic Cells/drug effects , Farnesol/pharmacology , Signal Transduction/drug effects , Candida albicans/chemistry , Candida albicans/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/immunology , Farnesol/chemistry , Healthy Volunteers , Humans , Quorum Sensing/drug effects , Quorum Sensing/immunology , Signal Transduction/immunology
3.
Front Immunol ; 9: 667, 2018.
Article En | MEDLINE | ID: mdl-29670632

The condition of neutropenia, i.e., a reduced absolute neutrophil count in blood, constitutes a major risk factor for severe infections in the affected patients. Candida albicans and Candida glabrata are opportunistic pathogens and the most prevalent fungal species in the human microbiota. In immunocompromised patients, they can become pathogenic and cause infections with high mortality rates. In this study, we use a previously established approach that combines experiments and computational models to investigate the innate immune response during blood stream infections with the two fungal pathogens C. albicans and C. glabrata. First, we determine immune-reaction rates and migration parameters under healthy conditions. Based on these findings, we simulate virtual patients and investigate the impact of neutropenic conditions on the infection outcome with the respective pathogen. Furthermore, we perform in silico treatments of these virtual patients by simulating a medical treatment that enhances neutrophil activity in terms of phagocytosis and migration. We quantify the infection outcome by comparing the response to the two fungal pathogens relative to non-neutropenic individuals. The analysis reveals that these fungal infections in neutropenic patients can be successfully cleared by cytokine treatment of the remaining neutrophils; and that this treatment is more effective for C. glabrata than for C. albicans.


Candida albicans/physiology , Candida glabrata/physiology , Candidiasis/immunology , Computer Simulation , Microbiota/immunology , Neutropenia/immunology , Neutrophils/immunology , Cell Movement/immunology , Cytokines/metabolism , Humans , Immunity, Innate , Immunocompromised Host , Models, Theoretical , Neutropenia/microbiology , Neutrophil Activation , Phagocytosis
4.
Front Immunol ; 9: 560, 2018.
Article En | MEDLINE | ID: mdl-29619027

Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.


Algorithms , Candida albicans/immunology , Candida glabrata/immunology , Candidemia/immunology , Immune Evasion/immunology , Models, Immunological , Candida albicans/physiology , Candida glabrata/physiology , Candidemia/blood , Candidemia/microbiology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis/immunology
5.
Crit Rev Microbiol ; 44(2): 230-243, 2018 Mar.
Article En | MEDLINE | ID: mdl-28609183

Candida albicans is a successful colonizer of the human host, which can, under certain circumstances cause a range of clinically diverse infections. Important virulence-associated traits of the fungus, such as the dimorphic switch and biofilm formation, are controlled by the quorum sensing molecule farnesol. Given the potential of farnesol as a novel antifungal drug, there has been increasing research into the mechanism underlying farnesol sensing and action in C. albicans. However, despite the identification of various factors involved in farnesol signalling, its exact mode of action remains largely unclear. This review provides an overview of the currently known aspects of farnesol production, sensing and action within C. albicans. We also illustrate the characteristic of C. albicans to simultaneously produce and tolerate high farnesol concentrations that are lethal to other microbes. Furthermore, we summarize new literature on the role of farnesol in the interaction of C. albicans with the human host and highlight its action as a potent immunomodulatory molecule.


Anti-Infective Agents/metabolism , Candida albicans/physiology , Farnesol/metabolism , Quorum Sensing , Signal Transduction , Candida albicans/metabolism , Candidiasis/microbiology , Candidiasis/pathology , Host-Pathogen Interactions , Humans , Immunologic Factors/metabolism
6.
Sci Rep ; 7(1): 6138, 2017 07 21.
Article En | MEDLINE | ID: mdl-28733594

Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.


Aspergillus fumigatus/pathogenicity , CD56 Antigen/metabolism , Down-Regulation , Killer Cells, Natural/microbiology , Killer Cells, Natural/ultrastructure , Actins/ultrastructure , Aspergillus fumigatus/immunology , Cytoskeleton/ultrastructure , Flow Cytometry , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Lymphocyte Activation , Microscopy, Confocal , Microscopy, Electron, Scanning
7.
Front Microbiol ; 8: 270, 2017.
Article En | MEDLINE | ID: mdl-28280489

Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.

8.
Sci Rep ; 6: 27990, 2016 06 27.
Article En | MEDLINE | ID: mdl-27346433

Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation.


Aspergillus fumigatus/immunology , Candida albicans/immunology , Dendritic Cells/immunology , Interleukin-6/immunology , Kruppel-Like Transcription Factors/metabolism , Receptors, Pattern Recognition/metabolism , Aspergillosis/immunology , Aspergillosis/mortality , Aspergillosis/pathology , Cell Line , Gene Expression Profiling , Humans , Interleukin-6/metabolism , Kruppel-Like Factor 4 , Lipopolysaccharides/immunology , Pulmonary Aspergillosis/immunology , Pulmonary Aspergillosis/mortality , Pulmonary Aspergillosis/pathology
9.
mBio ; 6(2): e00143, 2015 Mar 17.
Article En | MEDLINE | ID: mdl-25784697

UNLABELLED: Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. IMPORTANCE: Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be important for fungal clearance and protective immunity. We show that farnesol is able to enhance inflammation by inducing activation of neutrophils and monocytes. At the same time, farnesol impairs differentiation of monocytes into immature dendritic cells (iDC) by modulating surface phenotype, cytokine release and migrational behavior. Consequently, iDC generated in the presence of farnesol are unable to induce proper T cell responses and fail to secrete Th1 promoting interleukin 12 (IL-12). As farnesol induced down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor, desensitization to GM-CSF could potentially explain transcriptional reprofiling of iDC effector molecules. Taken together, our data show that farnesol can also mediate Candida-host communication and is able to act as a virulence factor.


Adaptive Immunity/drug effects , Candida albicans/physiology , Farnesol/metabolism , Immunologic Factors/metabolism , Quorum Sensing , Virulence Factors/metabolism , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gene Expression Profiling , Humans , Monocytes/drug effects , Monocytes/immunology , Neutrophils/drug effects , Neutrophils/immunology
10.
Virulence ; 6(4): 316-26, 2015.
Article En | MEDLINE | ID: mdl-25785541

Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.


Candida albicans/immunology , Candidiasis, Invasive/immunology , Candidiasis/immunology , Fungemia/immunology , Sepsis/immunology , Adaptive Immunity , Animals , Complement System Proteins/immunology , Disease Models, Animal , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Mice , Neutrophils/immunology , Sepsis/microbiology
11.
Eukaryot Cell ; 11(5): 673-82, 2012 May.
Article En | MEDLINE | ID: mdl-22408226

Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.


Arthrodermataceae/immunology , Fungal Proteins/chemistry , Genes, Fungal , Hydrophobic and Hydrophilic Interactions , Neutrophils/immunology , Amino Acid Sequence , Arthrodermataceae/chemistry , Arthrodermataceae/genetics , Arthrodermataceae/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/microbiology , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/chemistry , Escherichia coli/genetics , Fungal Proteins/immunology , Humans , Immunity, Cellular , Interleukins/immunology , Molecular Sequence Data , Mycelium/chemistry , Neutrophils/microbiology , Phagocytosis , RNA, Fungal/genetics , Sequence Deletion , Spores, Fungal/chemistry , Spores, Fungal/immunology , Spores, Fungal/pathogenicity , Tumor Necrosis Factor-alpha/immunology , Wettability
12.
FEMS Yeast Res ; 9(5): 688-700, 2009 Aug.
Article En | MEDLINE | ID: mdl-19473261

The human pathogenic yeast Candida albicans can cause an unusually broad range of infections reflecting a remarkable potential to adapt to various microniches within the human host. The exceptional adaptability of C. albicans is mediated by rapid alterations in gene expression in response to various environmental stimuli and this transcriptional flexibility can be monitored with tools such as microarrays. Using such technology it is possible to (1) capture a genome-wide portrait of the transcriptome that mirrors the environmental conditions, (2) identify known genes, signalling pathways and transcription factors involved in pathogenesis, (3) identify new patterns of gene expression and (4) identify previously uncharacterized genes that may be associated with infection. In this review, we describe the molecular dissection of three distinct stages of infections, covering both superficial and invasive disease, using in vitro, ex vivo and in vivo infection models and microarrays.


Candida albicans/pathogenicity , Candidiasis/microbiology , Fungal Proteins/genetics , Virulence Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Humans
...