Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 10(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630449

RESUMEN

The leafless orchids are rare epiphytic plants with extremely reduced leaves, and their aerial roots adopted for photosynthesis. The beneficial plant-microbial interactions contribute significantly to host nutrition, fitness, and growth. However, there are no data available on the bacterial associations, inhabiting leafless orchids. Here, we describe the diversity of cyanobacteria, which colonize the roots of greenhouse Microcoelia moreauae and Chiloschista parishii. The biodiversity and structure of the cyanobacterial community were analyzed using a complex approach, comprising traditional cultivable techniques, denaturing gradient gel electrophoresis (DGGE), and phylogenetic analysis, as well as the light and scanning electron microscopy (SEM). A wide diversity of associated bacteria colonize the root surface, forming massive biofilms on the aerial roots. The dominant populations of filamentous nitrogen-fixing cyanobacteria belonged to the orders Oscillatoriales, Synechococcales, and Nostocales. The composition of the cyanobacterial community varied, depending on the nitrogen supply. Two major groups prevailed under nitrogen-limiting conditions, belonging to Leptolyngbya sp. and Komarekiella sp. The latter was characterized by DGGE profiling and sequencing, as well as by its distinctive features of morphological plasticity. The leading role of these phototrophophic and diazotrophic cyanobacteria is discussed in terms of the epiphytic lifestyle of the leafless orchids.

2.
Arch Oral Biol ; 114: 104716, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32325265

RESUMEN

The present study aimed to assess the influence of centrifugation and inoculation time on the number, distribution, and viability of intratubular bacteria and surface monospecies E. faecalis biofilm. MATERIALS AND METHODS: Forty-four semicylindrical specimens cut from primary (n = 22) and permanent (n = 22) bovine teeth were randomly assigned to the experimental groups. Teeth of each type were inoculated with E. faecalis with and without centrifugation for 1 and 14 days. The number, localization, viability of bacteria and depth of their penetration were assessed with bacterial culturing of dentin shavings, scanning electron microscopy (SEM) and confocal laser electron microscopy (CLSM). Three-way ANOVA with post-hoc Tukey test were used to assess the influence of different experimental setups on dentin infection. RESULTS: Severe dentin infection was observed in permanent and deciduous teeth after centrifugation and 1-day incubation: bacteria reached the full length of dentinal tubules and colony-forming units were too numerous to count. The volume of green fluorescence didn't differ significantly in permanent teeth compared with deciduous (p = 1.0). After 1-day stationary inoculation, small number of cultivable bacteria and few viable bacteria in dentinal tubules were found in both groups. After 14-day stationary inoculation, the dentin infection according to CLSM was deeper in deciduous teeth compared with permanent (p = 0.006 and p = 0.019 for centrifugation and stationary inoculation, respectively). CONCLUSION: The most even and dense dentin infection was observed in primary and permanent bovine teeth after centrifugation and 1-day inoculation, and in deciduous teeth after 14-day stationary inoculation.


Asunto(s)
Biopelículas , Centrifugación , Dentina/microbiología , Enterococcus faecalis , Viabilidad Microbiana , Animales , Bovinos , Microscopía Electrónica de Rastreo , Diente Primario/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA