Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Dev Biol ; 65(4-5-6): 383-394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930384

RESUMEN

Mediator is a conserved transcriptional co-activator that links transcription factors bound at enhancer elements to RNA Polymerase II. Mediator-RNA Polymerase II interactions can be sterically hindered by the Cyclin Dependent Kinase 8 (CDK8) module, a submodule of Mediator that acts to repress transcription in response to discrete cellular and environmental cues. The CDK8 module is conserved in all eukaryotes and consists of 4 proteins: CDK8, CYCLIN C (CYCC), MED12, and MED13. In this study, we have characterized the CDK8 module of Mediator in maize using genomic, molecular and functional resources. The maize genome contains single copy genes for Cdk8, CycC, and Med13, and two genes for Med12. Analysis of expression data for the CDK8 module demonstrated that all five genes are broadly expressed in maize tissues, and change their expression in response to phosphate and nitrogen limitation. We performed Dissociation (Ds) insertional mutagenesis, recovering two independent insertions in the ZmMed12a gene, one of which produces a truncated transcript. Our molecular identification of the maize CDK8 module, assays of CDK8 module expression under nutrient limitation, and characterization of transposon insertions in ZmMed12a establish the basis for molecular and functional studies of the role of these important transcriptional regulators in development and nutrient homeostasis in Zea mays.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Genes de Plantas , Zea mays , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Elementos Transponibles de ADN , Mutagénesis , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Zea mays/genética
2.
Data Brief ; 15: 642-647, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124087

RESUMEN

The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

3.
Dev Biol ; 431(2): 145-151, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912016

RESUMEN

miRNAs are essential regulators of cell identity, yet their role in early embryo development in plants remains largely unexplored. To determine the earliest stage at which miRNAs act to promote pattern formation in embryogenesis, we examined a series of mutant alleles in the Arabidopsis thaliana miRNA biogenesis enzymes DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1). Cellular and patterning defects were observed in dcl1, se and hyl1 embryos from the zygote through the globular stage of embryogenesis. To identify miRNAs that are expressed in early embryogenesis, we sequenced mRNAs from globular stage Columbia wild type (wt) and se-1 embryos, and identified transcripts potentially corresponding to 100 miRNA precursors. Considering genome location and transcript increase between wt and se-1, 39 of these MIRNAs are predicted to be bona fide early embryo miRNAs. Among these are conserved miRNAs such as miR156, miR159, miR160, miR161, miR164, miR165, miR166, miR167, miR168, miR171, miR319, miR390 and miR394, as well as miRNAs whose function has never been characterized. Our analysis demonstrates that miRNAs promote pattern formation beginning in the zygote, and provides a comprehensive dataset for functional studies of individual miRNAs in Arabidopsis embryogenesis.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Tipificación del Cuerpo/genética , MicroARNs/metabolismo , Semillas/embriología , Semillas/genética , Cigoto/metabolismo , Arabidopsis/citología , División Celular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Morfogénesis/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
4.
BMC Genomics ; 17: 364, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27189211

RESUMEN

BACKGROUND: Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the majority of protein-coding genes. They have been implicated in development and disease, leading to great interest in understanding their function, with computational methods being widely used to predict their targets. Most computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning the whole transcriptome to predict one set of targets for each microRNA. This has the limitation of not considering that the same microRNA could have different sets of targets, and thus different functions, when expressed in different types of cells. RESULTS: To address this problem, we combine popular target prediction methods with expression profiles, via machine learning, to produce a new predictor: TargetExpress. Using independent data from microarrays and high-throughput sequencing, we show that TargetExpress outperforms existing methods, and that our predictions are enriched in functions that are coherent with the added expression profile and literature reports. CONCLUSIONS: Our method should be particularly useful for anyone studying the functions and targets of miRNAs in specific tissues or cells. TargetExpress is available at: http://targetexpress.ceiabreulab.org/ .


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Transcriptoma , Animales , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica/métodos , Humanos , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
5.
Curr Opin Plant Biol ; 29: 148-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26802806

RESUMEN

Zygotic genome activation (ZGA) is the onset of large-scale transcription that occurs after fertilization. In animal embryos, ZGA occurs after a period of transcriptional quiescence that varies between species. In plants, the timing of ZGA may also vary between species, and may or may not occur in a parent-of-origin dependent manner: some studies have shown a maternal bias in mRNA transcripts and gene activity in early embryogenesis, while other experiments have found the contribution of maternal and paternal genomes to be equal. In order to differentiate between maternal and paternal mRNAs, RNA sequencing studies of ZGA in plants have used embryos hybrid for polymorphic accessions. A recent genetic assay in Arabidopsis demonstrated significant variation in paternal allele activity between some hybrid combinations and isogenic embryos, as well as between different hybrid combinations, suggesting a possible source for conflicting results obtained by various experiments on paternal genome activation. We review recent literature on paternal genome activation studies in the zygote in both isogenic and hybrid embryos, and discuss possible explanations for the effects of hybridization on gene expression in early embryogenesis in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Hibridación Genética , Semillas/genética , Regulación del Desarrollo de la Expresión Génica , Semillas/crecimiento & desarrollo , Cigoto/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA