Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Neurol Neuroimmunol Neuroinflamm ; 11(1): e200185, 2024 Jan.
Article En | MEDLINE | ID: mdl-38100739

BACKGROUND AND OBJECTIVES: The factors that drive progression in multiple sclerosis (MS) remain obscure. Identification of key properties of meningeal inflammation will contribute to a better understanding of the mechanisms of progression and how to prevent it. METHODS: Applying single-cell RNA sequencing, we compared gene expression profiles in immune cells from meningeal ectopic lymphoid tissue (mELT) with those from secondary lymphoid organs (SLOs) in spontaneous chronic experimental autoimmune encephalomyelitis (EAE), an animal model of MS. RESULTS: Generally, mELT contained the same immune cell types as SLOs, suggesting a close relationship. Preponderance of B cells over T cells, an increase in regulatory T cells and granulocytes, and a decrease in naïve CD4+ T cells characterize mELT compared with SLOs. Differential gene expression analysis revealed that immune cells in mELT show a more activated and proinflammatory phenotype compared with their counterparts in SLOs. However, the increase in regulatory T cells and upregulation of immunosuppressive genes in most immune cell types indicate that there are mechanisms in place to counter-regulate the inflammatory events, keeping the immune response emanating from mELT in check. DISCUSSION: Common features in immune cell composition and gene expression indicate that mELT resembles SLOs and may be regarded as a tertiary lymphoid tissue. Distinct differences in expression profiles suggest that mELT rather than SLOs is a key driver of CNS inflammation in spontaneous EAE. Our data provide a starting point for further exploration of molecules or pathways that could be targeted to disrupt mELT formation.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Tertiary Lymphoid Structures , Animals , Central Nervous System , Meninges , Inflammation
2.
Proc Natl Acad Sci U S A ; 119(34): e2206208119, 2022 08 23.
Article En | MEDLINE | ID: mdl-35969754

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.


Brain Neoplasms , CD4-Positive T-Lymphocytes , Glioblastoma , T-Lymphocytes, Helper-Inducer , Brain Neoplasms/pathology , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Flow Cytometry , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/cytology , T-Lymphocytes, Helper-Inducer/cytology
3.
J Exp Med ; 219(8)2022 08 01.
Article En | MEDLINE | ID: mdl-35819408

In certain instances, Th17 responses are associated with severe immunopathology. T cell-intrinsic mechanisms that restrict pathogenic effector functions have been described for type 1 and 2 responses but are less well studied for Th17 cells. Here, we report a cell-intrinsic feedback mechanism that controls the pathogenicity of Th17 cells. Th17 cells produce IL-24, which prompts them to secrete IL-10. The IL-10-inducing function of IL-24 is independent of the cell surface receptor of IL-24 on Th17 cells. Rather, IL-24 is recruited to the inner mitochondrial membrane, where it interacts with the NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 13 (also known as Grim19), a constituent of complex I of the respiratory chain. Together, Grim19 and IL-24 promote the accumulation of STAT3 in the mitochondrial compartment. We propose that IL-24-guided mitochondrial STAT3 constitutes a rheostat to blunt extensive STAT3 deflections in the nucleus, which might then contribute to a robust IL-10 response in Th17 cells and a restriction of immunopathology in experimental autoimmune encephalomyelitis.


Cytokines/immunology , Interleukin-10 , Th17 Cells , Animals , Cell Differentiation , Interleukin-10/metabolism , Mice , NADH, NADPH Oxidoreductases/metabolism , Signal Transduction , Virulence
4.
Neurol Ther ; 11(2): 905-913, 2022 Jun.
Article En | MEDLINE | ID: mdl-35124795

INTRODUCTION: In spite of antiviral treatment, herpes simplex encephalitis (HSE) remains associated with a poor prognosis and often results in neurological impairment. The B cell response in HSE is poorly understood. The objective of this study was to identify, in a patient with HSE, B cell clones in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs) that expanded between two different time points during the course of infection. METHODS: CSF cells and PBMCs were sampled from a HSE patient at two time points 5 days apart. B cells were analyzed using single-cell immune profiling (CSF cells) and conventional deep immune repertoire sequencing (PBMCs). RESULTS: We identified CSF B cell clones that expanded from time 1 to time 2. Some of these B cell clones could also be found in the peripheral blood. We also report the corresponding B cell receptor (BCR) sequences. CONCLUSION: In our patient, HSE resulted in an intrathecal B cell response with expanding CSF clones. We report the B cell receptor sequences of several expanding and dominating clones; these sequences can be used to create recombinant antibodies. Even though the antigen specificity of these expanding clones is unknown, our findings suggest that an adaptive immune response in the central nervous system contributes to repelling herpes simplex virus infection in the brain.

5.
Nat Immunol ; 22(7): 880-892, 2021 07.
Article En | MEDLINE | ID: mdl-34099917

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Autoimmunity , Brain/immunology , Cell Lineage , Encephalomyelitis, Autoimmune, Experimental/immunology , Intestines/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Autoimmunity/drug effects , Brain/drug effects , Brain/metabolism , Calcium Signaling , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fingolimod Hydrochloride/pharmacology , Gene Expression Profiling , Genes, T-Cell Receptor , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Intestines/drug effects , Intravital Microscopy , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Phenotype , Prospective Studies , RNA-Seq , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Single-Cell Analysis , Skin/drug effects , Skin/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , Transcriptome
6.
Article En | MEDLINE | ID: mdl-32029531

OBJECTIVE: To study intrathecal B-cell activity in leucine-rich, glioma-inactivated 1 (LGI1) antibody encephalitis. In patients with LGI1 antibodies, the lack of CSF lymphocytosis or oligoclonal bands and serum-predominant LGI1 antibodies suggests a peripherally initiated immune response. However, it is unknown whether B cells within the CNS contribute to the ongoing pathogenesis of LGI1 antibody encephalitis. METHODS: Paired CSF and peripheral blood (PB) mononuclear cells were collected from 6 patients with LGI1 antibody encephalitis and 2 patients with other neurologic diseases. Deep B-cell immune repertoire sequencing was performed on immunoglobulin heavy chain transcripts from CSF B cells and sorted PB B-cell subsets. In addition, LGI1 antibody levels were determined in CSF and PB. RESULTS: Serum LGI1 antibody titers were on average 127-fold higher than CSF LGI1 antibody titers. Yet, deep B-cell repertoire analysis demonstrated a restricted CSF repertoire with frequent extensive clusters of clonally related B cells connected to mature PB B cells. These clusters showed intensive mutational activity of CSF B cells, providing strong evidence for an independent CNS-based antigen-driven response in patients with LGI1 antibody encephalitis but not in controls. CONCLUSIONS: Our results demonstrate that intrathecal immunoglobulin repertoire expansion is a feature of LGI1 antibody encephalitis and suggests a need for CNS-penetrant therapies.


Autoantibodies/metabolism , B-Lymphocytes , Encephalitis/cerebrospinal fluid , Encephalitis/immunology , Intracellular Signaling Peptides and Proteins/immunology , Adult , Aged , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Encephalitis/blood , Female , Humans , Male , Middle Aged
7.
Front Immunol ; 11: 606338, 2020.
Article En | MEDLINE | ID: mdl-33391273

Double negative (DN) (CD19+CD20lowCD27-IgD-) B cells are expanded in patients with autoimmune and infectious diseases; however their role in the humoral immune response remains unclear. Using systematic flow cytometric analyses of peripheral blood B cell subsets, we observed an inflated DN B cell population in patients with variety of active inflammatory conditions: myasthenia gravis, Guillain-Barré syndrome, neuromyelitis optica spectrum disorder, meningitis/encephalitis, and rheumatic disorders. Furthermore, we were able to induce DN B cells in healthy subjects following vaccination against influenza and tick borne encephalitis virus. Transcriptome analysis revealed a gene expression profile in DN B cells that clustered with naïve B cells, memory B cells, and plasmablasts. Immunoglobulin VH transcriptome sequencing and analysis of recombinant antibodies revealed clonal expansion of DN B cells that were targeted against the vaccine antigen. Our study suggests that DN B cells are expanded in multiple inflammatory neurologic diseases and represent an inducible B cell population that responds to antigenic stimulation, possibly through an extra-follicular maturation pathway.


B-Lymphocytes/immunology , Cell Proliferation , Communicable Diseases/immunology , Immunogenicity, Vaccine , Inflammation/immunology , Lymphocyte Activation , Viral Vaccines/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antigens, CD19/metabolism , Antigens, CD20/metabolism , B-Lymphocytes/metabolism , Case-Control Studies , Communicable Diseases/blood , Communicable Diseases/genetics , Communicable Diseases/virology , Encephalitis Viruses, Tick-Borne/immunology , Female , Humans , Immunity, Humoral , Inflammation/blood , Inflammation/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Male , Middle Aged , Phenotype , Transcriptome , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Vaccination , Viral Vaccines/administration & dosage , Young Adult
8.
J Neuroinflammation ; 16(1): 219, 2019 Nov 14.
Article En | MEDLINE | ID: mdl-31727097

BACKGROUND: Cytokines play multiple roles during neuro-inflammatory processes and several cytokines have been studied in the context of specific diseases. This study provides a comprehensive picture of cerebrospinal fluid (CSF) changes during neuro-inflammation by analyzing multiple cytokines in combination with immune cell subsets and standard CSF parameters. METHODS: Using multiplex assays, we simultaneously measured 36 cytokines (CCL1-3, CCL7, CCL8, CCL11, CCL13, CCL19, CCL20, CCL22-27, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9, CXCL11-13, CXCL16, CX3CL1, IL2, IL4, IL6, IL10, IL16, GM-CSF, IFNγ, MIF, TNFα, and MIB1ß) in the CSF and serum of 75 subjects. Diagnoses included clinically isolated syndrome and relapsing-remitting multiple sclerosis (MS, n = 18), secondary progressive MS (n = 8), neuro-syphilis (n = 6), Lyme neuro-borreliosis (n = 13), bacterial and viral meningitis (n = 20), and patients with non-inflammatory neurological diseases (NIND, n = 10). Cytokine concentrations were correlated with CSF standard parameters and CSF immune cell subsets (CD4 and CD8 T cells, B cells, plasmablasts, monocytes, and NK cells) quantified by flow cytometry. RESULTS: We observed increased levels of multiple cytokines (26/36) in patients with neuro-inflammatory diseases when compared to NIND that consistently correlated with CSF cell count and QAlbumin. Most CSF cytokine concentrations correlated with each other, but correlations between CSF and serum values were scarce (3/36). Within the CSF compartment, CXCL13 showed a strong association with B cells when analyzing all patients, as well as patients with an intact blood-brain barrier (BBB). NK cells positively correlated with CSF concentrations of multiple cytokines (22/36) when analyzing all patients. These correlations were maintained when looking at patients with a disrupted BBB but not detectable in patients with an intact BBB. CONCLUSIONS: Under conditions of neuro-inflammation, multiple CSF cytokines are regulated in parallel and most likely produced locally. A combined increase of CSF CXCL13 levels and B cells occurs under conditions of an intact BBB. Under conditions of a disrupted BBB, CSF NK cells show significantly increased values and seem to have a major contribution to overall inflammatory processes, reflected by a strong correlation with multiple cytokines. Future studies are necessary to address the exact kinetics of these cytokines during neuro-inflammation and their relation to specific diseases phenotypes.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/cerebrospinal fluid , Killer Cells, Natural/immunology , Meningitis, Bacterial/immunology , Monocytes/immunology , Multiple Sclerosis/immunology , Neurosyphilis/immunology , Adult , Aged , Aged, 80 and over , Female , Flow Cytometry , Humans , Inflammation/cerebrospinal fluid , Inflammation/immunology , Male , Meningitis, Bacterial/cerebrospinal fluid , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Neurosyphilis/cerebrospinal fluid , Young Adult
9.
Cell Rep ; 26(7): 1854-1868.e5, 2019 02 12.
Article En | MEDLINE | ID: mdl-30759395

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


DNA Methylation , Encephalomyelitis, Autoimmune, Experimental/immunology , Forkhead Transcription Factors/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , T-Lymphocytes, Regulatory/immunology , Animals , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Epigenesis, Genetic , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/immunology , Genomic Imprinting , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism
10.
Mult Scler ; 25(2): 224-234, 2019 02.
Article En | MEDLINE | ID: mdl-29303033

BACKGROUND: Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. OBJECTIVE: To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. METHOD: In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. RESULTS: Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. CONCLUSION: Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.


Multiple Sclerosis, Relapsing-Remitting/pathology , Optic Neuritis/pathology , Retinal Vessels/pathology , Adult , Cerebral Angiography/methods , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Female , Humans , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Optic Neuritis/diagnostic imaging , Retina/diagnostic imaging , Retina/pathology , Retinal Vessels/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence/methods
11.
Nat Immunol ; 19(12): 1341-1351, 2018 12.
Article En | MEDLINE | ID: mdl-30374128

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.


Autoimmunity/immunology , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myeloid-Derived Suppressor Cells/immunology , Adolescent , Adult , Animals , Central Nervous System/immunology , Female , Humans , Male , Mice , Middle Aged , Young Adult
12.
Proc Natl Acad Sci U S A ; 115(39): 9773-9778, 2018 09 25.
Article En | MEDLINE | ID: mdl-30194232

The anti-CD20 antibody ocrelizumab, approved for treatment of multiple sclerosis, leads to rapid elimination of B cells from the blood. The extent of B cell depletion and kinetics of their recovery in different immune compartments is largely unknown. Here, we studied how anti-CD20 treatment influences B cells in bone marrow, blood, lymph nodes, and spleen in models of experimental autoimmune encephalomyelitis (EAE). Anti-CD20 reduced mature B cells in all compartments examined, although a subpopulation of antigen-experienced B cells persisted in splenic follicles. Upon treatment cessation, CD20+ B cells simultaneously repopulated in bone marrow and spleen before their reappearance in blood. In EAE induced by native myelin oligodendrocyte glycoprotein (MOG), a model in which B cells are activated, B cell recovery was characterized by expansion of mature, differentiated cells containing a high frequency of myelin-reactive B cells with restricted B cell receptor gene diversity. Those B cells served as efficient antigen-presenting cells (APCs) for activation of myelin-specific T cells. In MOG peptide-induced EAE, a purely T cell-mediated model that does not require B cells, in contrast, reconstituting B cells exhibited a naive phenotype without efficient APC capacity. Our results demonstrate that distinct subpopulations of B cells differ in their sensitivity to anti-CD20 treatment and suggest that differentiated B cells persisting in secondary lymphoid organs contribute to the recovering B cell pool.


Antigens, CD20/immunology , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Bone Marrow Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Myelin Sheath/immunology , Spleen/cytology , Spleen/immunology
13.
G3 (Bethesda) ; 7(7): 2107-2114, 2017 07 05.
Article En | MEDLINE | ID: mdl-28500052

In human, mouse, and Drosophila, the spliceosomal complex U1 snRNP (U1) protects transcripts from premature cleavage and polyadenylation at proximal intronic polyadenylation signals (PAS). These U1-mediated effects preserve transcription integrity, and are known as telescripting. The watchtower role of U1 throughout transcription is clear. What is less clear is whether cleavage and polyadenylation factors (CPFs) are simply patrolled or if they might actively antagonize U1 recruitment. In addressing this question, we found that, in the introns of human, mouse, and Drosophila, and of 14 other eukaryotes, including multi- and single-celled species, the conserved AATAAA PAS-a major target for CPFs-is selected against. This selective pressure, approximated using DNA strand asymmetry, is detected for peripheral and internal introns alike. Surprisingly, it is more pronounced within-rather than outside-the action range of telescripting, and particularly intense in the vicinity of weak 5' splice sites. Our study uncovers a novel feature of eukaryotic genes: that the AATAAA PAS is universally counter-selected in spliceosomal introns. This pattern implies that CPFs may attempt to access introns at any time during transcription. However, natural selection operates to minimize this access. By corroborating and extending previous work, our study further indicates that CPF access to intronic PASs might perturb the recruitment of U1 to the adjacent 5' splice sites. These results open the possibility that CPFs may impact the splicing process across eukaryotes.


RNA Precursors , RNA Splicing Factors/metabolism , RNA Splicing/physiology , Ribonucleoproteins, Small Nuclear/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Animals , Drosophila , Humans , Mice , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/genetics , Ribonucleoproteins, Small Nuclear/genetics , mRNA Cleavage and Polyadenylation Factors/genetics
14.
J Insect Physiol ; 99: 67-77, 2017 05.
Article En | MEDLINE | ID: mdl-28342762

In sexual species, mating success depends on the male's capacity to find sexual partners and on female receptivity to mating. Mating is under evolutionary constraints to prevent interspecific mating and to maximize the reproductive success of both sexes. In Drosophila melanogaster, female receptivity to mating is mainly controlled by Sex peptide (SP, i.e. Acp70A) produced by the male accessory glands with other proteins (Acps). The transfer of SP during copulation dramatically reduces female receptivity to mating and prevents remating with other males. To date, female postmating responses are well-known in D. melanogaster but have been barely investigated in closely-related species or strains exhibiting different mating systems (monoandrous versus polyandrous). Here, we describe the diversity of mating systems in two strains of D. melanogaster and the three species of the yakuba complex. Remating delay and sexual receptivity were measured in cross-experiments following SP orthologs or Acp injections within females. Interestingly, we discovered strong differences between the two strains of D. melanogaster as well as among the three species of the yakuba complex. These results suggest that reproductive behavior is under the control of complex sexual interactions between the sexes and evolves rapidly, even among closely-related species.


Drosophila Proteins/physiology , Drosophila/physiology , Peptides/physiology , Animals , Female , Male , Reproduction/physiology , Sexual Behavior, Animal/physiology , Species Specificity
15.
Theory Biosci ; 136(3-4): 89-98, 2017 Dec.
Article En | MEDLINE | ID: mdl-27995440

Are we in the midst of a paradigm change in biology and have animals and plants lost their individuality, i.e., are even so-called 'typical' organisms no longer organisms in their own right? Is the study of the holobiont-host plus its symbiotic microorganisms-no longer optional, but rather an obligatory path that must be taken for a comprehensive understanding of the ecology and evolution of the individual components that make up a holobiont? Or are associated microbes merely a component of their host's environment, and the holobiont concept is just a beautiful idea that does not add much or anything to our understanding of evolution? This article explores different aspects of the concept of the holobiont. We focus on the aspect of functional integration, a central holobiont property, which is only rarely considered thoroughly. We conclude that the holobiont comes in degrees, i.e., we regard the property of being a holobiont as a continuous trait that we term holobiontness, and that holobiontness is differentiated in several dimensions. Although the holobiont represents yet another level of selection (different from classical individual or group selection because it acts on a system that is composed of multiple species), it depends on the grade of functional integration whether or not the holobiont concept helps to cast light on the various degrees of interactions between symbiotic partners.


Adaptation, Biological , Biological Evolution , Biology/methods , Ecology/methods , Animals , Anthozoa , Drosophila , Fungi , Humans , Paramecium , Phenotype , Plants , Rickettsia , Symbiosis
16.
G3 (Bethesda) ; 6(6): 1617-26, 2016 06 01.
Article En | MEDLINE | ID: mdl-27172210

mRNA-associated processes and gene structure in eukaryotes are typically treated as separate research subjects. Here, we bridge this separation and leverage the extensive multidisciplinary work on Drosophila melanogaster to examine the roles that capping, splicing, cleavage/polyadenylation, and telescripting (i.e, the protection of nascent transcripts from premature cleavage/polyadenylation by the splicing factor U1) might play in shaping exon-intron architecture in protein-coding genes. Our findings suggest that the distance between subsequent internal 5' splice sites (5'ss) in Drosophila genes is constrained such that telescripting effects are maximized, in theory, and thus nascent transcripts are less vulnerable to premature termination. Exceptionally weak 5'ss and constraints on intron-exon size at the gene 5' end also indicate that capping might enhance the recruitment of U1 and, in turn, promote telescripting at this location. Finally, a positive correlation between last exon length and last 5'ss strength suggests that optimal donor splice sites in the proximity of the pre-mRNA tail may inhibit the processing of downstream polyadenylation signals more than weak donor splice sites do. These findings corroborate and build upon previous experimental and computational studies on Drosophila genes. They support the possibility, hitherto scantly explored, that mRNA-associated processes impose significant constraints on the evolution of eukaryotic gene structure.


Drosophila melanogaster/genetics , Exons , Introns , RNA Splicing , RNA, Messenger/genetics , Animals , Drosophila melanogaster/metabolism , Polyadenylation , RNA Cap-Binding Proteins/metabolism , RNA Cleavage , RNA Processing, Post-Transcriptional , RNA Splice Sites
17.
Nucleic Acids Res ; 43(17): 8157-68, 2015 Sep 30.
Article En | MEDLINE | ID: mdl-26304543

In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs' length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs' sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs' sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward.


DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , Paramecium tetraurelia/genetics , Regulatory Sequences, Nucleic Acid , Base Pairing , Base Sequence , Evolution, Molecular , Exons , Gene Expression , Introns , Paramecium tetraurelia/metabolism
18.
Biol Lett ; 7(2): 201-4, 2011 Apr 23.
Article En | MEDLINE | ID: mdl-20961886

Antagonistic networks are known to be structured in the wild, but knowledge on how this structure may change as a response to environmental perturbations is scarce. We describe a natural bipartite network between bacteria and lytic bacteriophages, and investigate how it is affected by environmental productivity in the form of different resource levels for the bacteria. We report that low amounts of resource decrease phage generality and lead to less robust and less stable communities. We discuss how resource levels in nature may alter the structure of complex communities.


Bacteriophages/physiology , Pseudomonas fluorescens/virology , Biodiversity , Food Chain , Host Specificity , Soil Microbiology , Vitis/microbiology
...