Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Nature ; 625(7995): 585-592, 2024 Jan.
Article En | MEDLINE | ID: mdl-38200309

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Cell Transformation, Neoplastic , MRE11 Homologue Protein , Nucleosomes , Nucleotidyltransferases , Humans , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Damage , MRE11 Homologue Protein/metabolism , Necroptosis , Nucleosomes/metabolism , Nucleotidyltransferases/metabolism , Radiation, Ionizing , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Genomic Instability
2.
J Mol Biol ; 436(4): 168424, 2024 02 15.
Article En | MEDLINE | ID: mdl-38159716

Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.


DNA Damage , Innate Immunity Recognition , Neoplasms , Humans , DNA Damage/immunology , DNA Repair , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology
3.
Br J Cancer ; 127(5): 927-936, 2022 09.
Article En | MEDLINE | ID: mdl-35618789

PURPOSE: Radiation therapy (RT) and hormone receptor (HR) inhibition are used for the treatment of HR-positive breast cancers; however, little is known about the interaction of the androgen receptor (AR) and estrogen receptor (ER) in response to RT in AR-positive, ER-positive (AR+/ER+) breast cancers. Here we assessed radiosensitisation of AR+/ER+ cell lines using pharmacologic or genetic inhibition/degradation of AR and/or ER. METHODS: Radiosensitisation was assessed with AR antagonists (enzalutamide, apalutamide, darolutamide, seviteronel, ARD-61), ER antagonists (tamoxifen, fulvestrant) or using knockout of AR. RESULTS: Treatment with AR antagonists or ER antagonists in combination with RT did not result in radiosensitisation changes (radiation enhancement ratios [rER]: 0.76-1.21). Fulvestrant treatment provided significant radiosensitisation of CAMA-1 and BT-474 cells (rER: 1.06-2.0) but not ZR-75-1 cells (rER: 0.9-1.11). Combining tamoxifen with enzalutamide did not alter radiosensitivity using a 1 h or 1-week pretreatment (rER: 0.95-1.14). Radiosensitivity was unchanged in AR knockout compared to Cas9 cells (rER: 1.07 ± 0.11), and no additional radiosensitisation was achieved with tamoxifen or fulvestrant compared to Cas9 cells (rER: 0.84-1.19). CONCLUSION: While radiosensitising in AR + TNBC, AR inhibition does not modulate radiation sensitivity in AR+/ER+ breast cancer. The efficacy of ER antagonists in combination with RT may also be dependent on AR expression.


Breast Neoplasms , Radiation Tolerance , Receptors, Androgen , Receptors, Estrogen , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Androgens , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Estrogen Receptor Antagonists/therapeutic use , Female , Fulvestrant/therapeutic use , Humans , Naphthalenes , Piperidines , Pyrrolidines , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Thiazoles , Triazoles
5.
NPJ Breast Cancer ; 8(1): 31, 2022 Mar 10.
Article En | MEDLINE | ID: mdl-35273179

Endocrine therapy (ET) is an effective first-line therapy for women with estrogen receptor-positive (ER + ) breast cancers. While both ionizing radiation (RT) and ET are used for the treatment of women with ER+ breast cancer, the most effective sequencing of therapy and the effect of ET on tumor radiosensitization remains unclear. Here we sought to understand the effects of inhibiting estrogen receptor (ER) signaling in combination with RT in multiple preclinical ER+ breast cancer models. Clonogenic survival assays were performed using variable pre- and post-treatment conditions to assess radiosensitization with estradiol, estrogen deprivation, tamoxifen, fulvestrant, or AZD9496 in ER+ breast cancer cell lines. Estrogen stimulation was radioprotective (radiation enhancement ratios [rER]: 0.51-0.82). Conversely, when given one hour prior to RT, ER inhibition or estrogen depletion radiosensitized ER+ MCF-7 and T47D cells (tamoxifen rER: 1.50-1.60, fulvestrant rER: 1.76-2.81, AZD9496 rER: 1.33-1.48, estrogen depletion rER: 1.47-1.51). Combination treatment resulted in an increase in double-strand DNA (dsDNA) breaks as a result of inhibition of non-homologous end joining-mediated dsDNA break repair with no effect on homologous recombination. Treatment with tamoxifen or fulvestrant in combination with RT also increased the number of senescent cells but did not affect apoptosis or cell cycle distribution. Using an MCF-7 xenograft model, concurrent treatment with tamoxifen and RT was synergistic and resulted in a significant decrease in tumor volume and a delay in time to tumor doubling without significant toxicity. These findings provide preclinical evidence that concurrent treatment with ET and RT may be an effective radiosensitization strategy.

6.
JCI Insight ; 7(3)2022 02 08.
Article En | MEDLINE | ID: mdl-34932500

Standard radiation therapy (RT) does not reliably provide locoregional control for women with multinode-positive breast cancer and triple-negative breast cancer (TNBC). We hypothesized that CDK4/6 inhibition (CDK4/6i) would increase the radiosensitivity not only of estrogen receptor-positive (ER+) cells, but also of TNBC that expresses retinoblastoma (RB) protein. We found that CDK4/6i radiosensitized RB WT TNBC (n = 4, radiation enhancement ratio [rER]: 1.49-2.22) but failed to radiosensitize RB-null TNBC (n = 3, rER: 0.84-1.00). RB expression predicted response to CDK4/6i + RT (R2 = 0.84), and radiosensitization was lost in ER+/TNBC cells (rER: 0.88-1.13) after RB1 knockdown in isogenic and nonisogenic models. CDK4/6i suppressed homologous recombination (HR) in RB WT cells but not in RB-null cells or isogenic models of RB1 loss; HR competency was rescued with RB reexpression. Radiosensitization was independent of nonhomologous end joining and the known effects of CDK4/6i on cell cycle arrest. Mechanistically, RB and RAD51 interact in vitro to promote HR repair. CDK4/6i produced RB-dependent radiosensitization in TNBC xenografts but not in isogenic RB1-null xenografts. Our data provide the preclinical rationale for a clinical trial expanding the use of CDK4/6i + RT to difficult-to-control RB-intact breast cancers (including TNBC) and nominate RB status as a predictive biomarker of therapeutic efficacy.


Cell Cycle Checkpoints/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Experimental , Triple Negative Breast Neoplasms/radiotherapy , Animals , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 4/biosynthesis , Cyclin-Dependent Kinase 6/biosynthesis , Disease Models, Animal , Female , Mice , Mice, SCID , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
...