Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 268
1.
Clin Epigenetics ; 16(1): 71, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802956

BACKGROUND: Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS: We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS: We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.


Brain , DNA Methylation , Depression , Epigenesis, Genetic , Serotonin Plasma Membrane Transport Proteins , Serotonin , Synaptic Transmission , Tryptophan Hydroxylase , Humans , DNA Methylation/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Male , Female , Adult , Tryptophan Hydroxylase/genetics , Serotonin/metabolism , Serotonin/blood , Brain/metabolism , Depression/genetics , Depression/metabolism , Epigenesis, Genetic/genetics , Synaptic Transmission/genetics , CpG Islands/genetics , Middle Aged , Young Adult , Receptors, Serotonin, 5-HT4/genetics , Receptors, Serotonin, 5-HT4/metabolism , Positron-Emission Tomography , Cohort Studies
2.
Sci Rep ; 11(1): 5368, 2021 03 08.
Article En | MEDLINE | ID: mdl-33686115

Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.


Brain/growth & development , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Emotions , Male , Maternal Deprivation , Mice , Mice, Knockout , Serotonin/genetics , Tryptophan Hydroxylase/genetics
3.
Eur Neuropsychopharmacol ; 36: 154-159, 2020 07.
Article En | MEDLINE | ID: mdl-32522387

A polymorphism in the gene encoding the serotonin (5-HT) transporter (5-HTT) has been shown to moderate the response to CO2 inhalation, an experimental model for panic attacks (PAs). Recurrent, unpredictable PAs represent, together with anticipatory anxiety of recurring attacks, the core feature of panic disorder (PD) and significantly interfere with patients' daily life. In addition to genetic components, accumulating evidence suggests that epigenetic mechanisms, which regulate gene expression by modifying chromatin structure, also play a fundamental role in the etiology of mental disorders. However, in PD, epigenetic mechanisms have barely been examined to date. In the present study, we investigated the relationship between methylation at the regulatory region of the gene encoding the 5-HTT and the reactivity to a 35% CO2 inhalation in PD patients. We focused on four specific CpG sites and found a significant association between the methylation level of one of these CpG sites and the fear response. This suggests that the emotional response to CO2 inhalation might be moderated by an epigenetic mechanism, and underlines the implication of the 5-HT system in PAs. Future studies are needed to further investigate epigenetic alterations in PD and their functional consequences. These insights can increase our understanding of the underlying pathophysiology and support the development of new treatment strategies.


Carbon Dioxide/adverse effects , DNA Methylation/physiology , Fear/physiology , Panic Disorder/metabolism , Regulatory Sequences, Nucleic Acid/physiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Base Sequence , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Fear/drug effects , Fear/psychology , Female , Humans , Male , Middle Aged , Panic Disorder/genetics , Panic Disorder/psychology , Serotonin Plasma Membrane Transport Proteins/genetics
4.
Mol Psychiatry ; 23(2): 444-458, 2018 02.
Article En | MEDLINE | ID: mdl-28070119

Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.


Obsessive-Compulsive Disorder/metabolism , Obsessive-Compulsive Disorder/pathology , Repressor Proteins/physiology , Amygdala/metabolism , Animals , Compulsive Behavior/metabolism , Corpus Striatum/metabolism , Extracellular Signal-Regulated MAP Kinases/physiology , Fluoxetine/metabolism , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Neurons/metabolism , Obsessive Behavior/physiopathology , Receptor, trkB/physiology , Repressor Proteins/genetics , Signal Transduction , Synapses/metabolism , Synaptic Transmission/physiology , Thalamus/metabolism
5.
Genes Brain Behav ; 17(4): e12420, 2018 04.
Article En | MEDLINE | ID: mdl-28846187

Anxiety disorders result from a complex interplay of genetic and environmental factors such as stress. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety. However, there is limited knowledge about the role of Rgs2 in fear learning and reactivity to stress. In this study, Rgs2-/- mice showed increased fear learning, male mice displayed increased contextual and cued fear learning, while females showed selectively enhanced cued fear learning. Male Rgs2-/- mice displayed increased long-term-contextual fear memory, but increased cued fear extinction. Learning in spatial non-aversive paradigms was also increased in Rgs2-/- mice. Female, but not male mice show increased spatial learning in the Barnes maze, while male mice showed enhanced place preference in the IntelliCage, rendering enhanced cognitive function non-specific for aversive stimuli. Consistent with the previous results, Rgs2 deletion resulted in increased innate anxiety, including neophobic behavior expressed as hypolocomotion, in three different tests based on the approach-avoidance conflict. Acute electric foot shock stress provoked hypolocomotion in several exploration-based tests, suggesting fear generalization in both genotypes. Rgs2 deletion was associated with reduced monoaminergic neurotransmitter levels in the hippocampus and prefrontal cortex and disturbed corresponding GPCR expression of the adrenergic, serotonergic, dopaminergic and neuropeptide Y system. Taken together, Rgs2 deletion promotes improved cognitive function as well as increased anxiety-like behavior, but has no effect on acute stress reactivity. These effects may be related to the observed disruption of the monoaminergic systems.


Learning/physiology , RGS Proteins/genetics , RGS Proteins/metabolism , Animals , Anxiety/physiopathology , Anxiety Disorders/metabolism , Behavior, Animal , Conditioning, Psychological , Cues , Fear/physiology , Fear/psychology , Female , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Spatial Learning/physiology , Spatial Memory/physiology
6.
Mol Psychiatry ; 23(5): 1145-1156, 2018 05.
Article En | MEDLINE | ID: mdl-28630453

In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD.


Epigenesis, Genetic , Stress Disorders, Post-Traumatic/genetics , Adult , Cohort Studies , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Longitudinal Studies , Male , Military Personnel/psychology , Prospective Studies , Repressor Proteins , Stress Disorders, Post-Traumatic/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Transl Psychiatry ; 7(10): e1246, 2017 10 03.
Article En | MEDLINE | ID: mdl-28972592

Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2-/-) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph+/-) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.


Amygdala/physiopathology , Anxiety/physiopathology , Escape Reaction , Panic Disorder/physiopathology , Serotonin/physiology , Agoraphobia/physiopathology , Amygdala/metabolism , Animals , Electroshock , Fear , Inhibitory Postsynaptic Potentials , Male , Mice, Knockout , Raphe Nuclei/metabolism , Serotonin/deficiency , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/genetics , gamma-Aminobutyric Acid/metabolism
8.
Neurochem Int ; 108: 238-245, 2017 Sep.
Article En | MEDLINE | ID: mdl-28414094

Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APPSWE/PS1ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APPSWE/PS1ΔE9 genotype.


Aging/metabolism , Alzheimer Disease/metabolism , Biogenic Monoamines/metabolism , Brain/metabolism , Aging/genetics , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Brain/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics
9.
Transl Psychiatry ; 6(11): e940, 2016 11 08.
Article En | MEDLINE | ID: mdl-27824354

In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies.


Choice Behavior/physiology , Delay Discounting/physiology , Impulsive Behavior/physiology , Magnetic Resonance Imaging , Nucleus Accumbens/physiology , Phenotype , Prefrontal Cortex/physiology , Reaction Time/physiology , Serotonin/physiology , Adult , Alleles , Genotype , Heterozygote , Homozygote , Humans , Male , Pattern Recognition, Visual/physiology , Reward , Translational Research, Biomedical , Tryptophan Hydroxylase/genetics , Young Adult
10.
Transl Psychiatry ; 6(10): e923, 2016 10 18.
Article En | MEDLINE | ID: mdl-27754487

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1%); (2) single marker association tests of common variants (MAF⩾1%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E-06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E-08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E-07); the PSD locus (P=7.58E-08) and ZCCHC4 locus (P=1.79E-06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E-05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD.


Attention Deficit Disorder with Hyperactivity/genetics , Exome Sequencing , Oligonucleotide Array Sequence Analysis , Polymorphism, Genetic/genetics , Adult , Brain/metabolism , Female , Genetic Loci/genetics , Genetic Variation , Genotype , Humans , Male , Open Reading Frames/genetics
11.
Transl Psychiatry ; 6(9): e885, 2016 09 06.
Article En | MEDLINE | ID: mdl-27598969

The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral-emotional and bodily response to CO2 exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO2 exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO2, demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies.


Behavior, Animal/drug effects , Carbon Dioxide/pharmacology , Disease Models, Animal , Fear/drug effects , Mice , Panic Disorder/psychology , Panic/drug effects , Adolescent , Adult , Animals , Blood Pressure/drug effects , Capnography , Carbon Dioxide/adverse effects , Female , Healthy Volunteers , Heart Rate/drug effects , Humans , Male , Middle Aged , Panic Disorder/physiopathology , Young Adult
12.
Transl Psychiatry ; 6: e773, 2016 Apr 05.
Article En | MEDLINE | ID: mdl-27045843

Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17%), while non-responders further decreased in methylation (-2.00±1.28%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.


Cognitive Behavioral Therapy , DNA Methylation , Epigenesis, Genetic , Monoamine Oxidase/genetics , Panic Disorder/genetics , Adult , Case-Control Studies , Female , Humans , Panic Disorder/therapy , Sequence Analysis, DNA
13.
Transl Psychiatry ; 5: e655, 2015 Oct 13.
Article En | MEDLINE | ID: mdl-26460479

Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.


Attention Deficit Disorder with Hyperactivity , Hippocampus , gamma-Aminobutyric Acid/metabolism , Animals , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/pathology , Attention Deficit Disorder with Hyperactivity/psychology , Cadherins/genetics , Disease Models, Animal , Genes, Tumor Suppressor , Hippocampus/metabolism , Hippocampus/pathology , Interneurons/physiology , Learning/physiology , Memory/physiology , Mice , Psychopathology , Synaptic Transmission/genetics
14.
Prog Neurobiol ; 129: 58-78, 2015 Jun.
Article En | MEDLINE | ID: mdl-25930682

Panic attacks (PAs), the core feature of panic disorder, represent a common phenomenon in the general adult population and are associated with a considerable decrease in quality of life and high health care costs. To date, the underlying pathophysiology of PAs is not well understood. A unique feature of PAs is that they represent a rare example of a psychopathological phenomenon that can be reliably modeled in the laboratory in panic disorder patients and healthy volunteers. The most effective techniques to experimentally trigger PAs are those that acutely disturb the acid-base homeostasis in the brain: inhalation of carbon dioxide (CO2), hyperventilation, and lactate infusion. This review particularly focuses on the use of CO2 inhalation in humans and rodents as an experimental model of panic. Besides highlighting the different methodological approaches, the cardio-respiratory and the endocrine responses to CO2 inhalation are summarized. In addition, the relationships between CO2 level, changes in brain pH, the serotonergic system, and adaptive physiological and behavioral responses to CO2 exposure are presented. We aim to present an integrated psychological and neurobiological perspective. Remaining gaps in the literature and future perspectives are discussed.


Brain/physiopathology , Carbon Dioxide/metabolism , Homeostasis/physiology , Panic Disorder/physiopathology , Serotonin/metabolism , Animals , Humans , Hydrogen-Ion Concentration
15.
Transl Psychiatry ; 4: e473, 2014 Oct 21.
Article En | MEDLINE | ID: mdl-25335169

The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt genotype, PS exposure and their interaction.


DNA Methylation/genetics , Genome-Wide Association Study/statistics & numerical data , Prenatal Exposure Delayed Effects/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Stress, Physiological/genetics , Stress, Psychological/genetics , Animals , Behavior, Animal , Female , Gene Expression/genetics , Hippocampus , Mice , Mice, Inbred C57BL , Pregnancy
16.
Eur Neuropsychopharmacol ; 24(1): 65-85, 2014 Jan.
Article En | MEDLINE | ID: mdl-24220657

NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia.


Glutamic Acid/metabolism , Nitric Oxide/genetics , Prefrontal Cortex/pathology , Schizophrenia/pathology , Signal Transduction/genetics , Synapses/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Computational Biology , Genetic Predisposition to Disease , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Schizophrenia/genetics
17.
Neuropharmacology ; 76 Pt A: 146-55, 2014 Jan.
Article En | MEDLINE | ID: mdl-23978383

Dopamine (DA) is accumulated and compartmentalized by the dopamine transporter (DAT; SLC3A6) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2). These transporters work at the plasma and vesicular membranes of dopaminergic neurons, respectively, and thus regulate levels of DA in neuronal compartments that include the extravesicular cytoplasmic compartment. DA in this compartment has been hypothesized to contribute to oxidative damage that can reduce the function of dopaminergic neurons in aging brains and may contribute to reductions in dopaminergic neurochemical markers, locomotor behavior and responses to dopaminergic drugs that are found in aged animals. The studies reported here examined aged mice with heterozygous deletions of VMAT2 or of DAT, which each reduce transporter expression to about 50% of levels found in wild-type (WT) mice. Aged mice displayed reduced locomotor responses under a variety of circumstances, including in response to locomotor stimulants, as well as changes in monoamine levels and metabolites in a regionally dependent manner. Several effects of aging were more pronounced in heterozygous VMAT2 knockout (KO) mice, including aging induced reductions in locomotion and reduced locomotor responses to cocaine. By contrast, some effects of aging were reduced or not observed in heterozygous DAT KO mice. These findings support the idea that altered DAT and VMAT2 expression affect age-related changes in dopaminergic function. These effects are most likely mediated by alterations in DA compartmentalization, and might be hypothesized to be exacerbated by other factors that affect the metabolism of cytosolic DA. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.


Aging/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/physiology , Vesicular Monoamine Transport Proteins/metabolism , Aging/drug effects , Aging/genetics , Amphetamine/pharmacology , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/genetics , Motor Activity/physiology , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/physiology
18.
Mol Psychiatry ; 19(1): 115-21, 2014 Jan.
Article En | MEDLINE | ID: mdl-23164820

Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency ≤1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls (P=2.8 × 10(-4) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients (P=1.2 × 10(-3) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control (P=4.3 × 10(-2)). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.


Attention Deficit Disorder with Hyperactivity/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Aged , Child , Community Health Planning , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
19.
Eur Neuropsychopharmacol ; 24(4): 595-607, 2014 Apr.
Article En | MEDLINE | ID: mdl-24139910

Exposure to prenatal stress (PS) can predispose individuals to the development of psychopathology later in life. We examined the effects of unpredictable chronic mild stress (CMS) exposure during adolescence on a background of PS in male and female Sprague-Dawley rats. PS induced more anxiety-like behavior in the elevated zero maze in both sexes, an effect that was normalized by subsequent exposure to CMS. Moreover, PS was associated with increased depression-like behavior in the forced swim test in males only. Conversely, sucrose intake was increased in PS males, whilst being decreased in females when consecutively exposed to PS and CMS. Hypothalamo-pituitary-adrenal (HPA) axis reactivity was affected in males only, with higher stress-induced plasma corticosterone levels after PS. Markedly, CMS normalized the effects of PS on elevated zero maze behavior as well as basal and stress-induced plasma corticosterone secretion. At the neurochemical level, both PS and CMS induced various sex-specific alterations in serotonin (5-HT) and tryptophan hydroxylase 2 (TPH2) immunoreactivity in the dorsal raphe nucleus, hippocampus and prefrontal cortex with, in line with the behavioral observations, more profound effects in male offspring. In conclusion, these findings show that prenatal maternal stress in Sprague-Dawley rats induces various anxiety- and depression-related behavioral and neuroendocrine changes, as well as alterations in central 5-HT and TPH2 function, predominantly in male offspring. Moreover, CMS exposure partially normalized the effects of previous PS experience, suggesting that the outcome of developmental stress exposure largely depends on the environmental conditions later in life and vice versa.


Allostasis , Anxiety/etiology , Depression/etiology , Disease Models, Animal , Prenatal Exposure Delayed Effects/physiopathology , Serotonergic Neurons/metabolism , Stress, Physiological , Animals , Anxiety/blood , Anxiety/prevention & control , Behavior, Animal , Depression/blood , Depression/prevention & control , Female , Hippocampus/enzymology , Hippocampus/metabolism , Hippocampus/pathology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Male , Nerve Tissue Proteins/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Prefrontal Cortex/enzymology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/psychology , Raphe Nuclei/enzymology , Raphe Nuclei/metabolism , Raphe Nuclei/pathology , Rats , Rats, Sprague-Dawley , Serotonergic Neurons/enzymology , Serotonergic Neurons/pathology , Sex Characteristics , Tryptophan Hydroxylase/metabolism
20.
J Neural Transm (Vienna) ; 120(11): 1611-7, 2013 Nov.
Article En | MEDLINE | ID: mdl-23712748

Bipolar disorder (BD) and attention deficit/hyperactivity disorder (ADHD) may share common genetic risk factors as indicated by the high co-morbidity of BD and ADHD, their phenotypic overlap especially in pediatric populations, the high heritability of both disorders, and the co-occurrence in families. We therefore examined whether known polygenic BD risk alleles are associated with ADHD. We chose the eight best SNPs of the recent genome-wide association study (GWAS) of BD patients of German ancestry and the nine SNPs from international GWAS meeting a 'genome-wide significance' level of α = 5 × 10(-8). A GWAS was performed in 495 ADHD children and 1,300 population-based controls using HumanHap550v3 and Human660 W-Quadv1 BeadArrays. We found no significant association of childhood ADHD with single BD risk alleles surviving adjustment for multiple testing. Yet, risk alleles for BD and ADHD were directionally consistent at eight of nine loci with the strongest support for three SNPs in or near NCAN, BRE, and LMAN2L. The polygene analysis for the BP risk alleles at all 14 loci indicated a higher probability of being a BD risk allele carrier in the ADHD cases as compared to the controls. At a moderate power to detect association with ADHD, if true effects were close to estimates from GWAS for BD, our results suggest that the possible contribution of BD risk variants to childhood ADHD risk is considerably lower than for BD. Yet, our findings should encourage researchers to search for common genetic risk factors in BD and childhood ADHD in future studies.


Alleles , Attention Deficit Disorder with Hyperactivity/genetics , Bipolar Disorder/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adolescent , Attention Deficit Disorder with Hyperactivity/complications , Bipolar Disorder/complications , Child , Female , Genome-Wide Association Study , Haplotypes , Humans , Male , White People/genetics
...