Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38793742

RESUMEN

The emergence of rapidly spreading variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a major challenge to vaccines' protective efficacy. Intramuscular (IM) vaccine administration induces short-lived immunity but does not prevent infection and transmission. New vaccination strategies are needed to extend the longevity of vaccine protection, induce mucosal and systemic immunity and prevent viral transmission. The intranasal (IN) administration of the VSV-ΔG-spike vaccine candidate directly to mucosal surfaces yielded superior mucosal and systemic immunity at lower vaccine doses. Compared to IM vaccination in the K18-hACE2 model, IN vaccination preferentially induced mucosal IgA and T-cells, reduced the viral load at the site of infection, and ameliorated disease-associated brain gene expression. IN vaccination was protective even one year after administration. As most of the world population has been vaccinated by IM injection, we demonstrate the potential of a heterologous IM + IN vaccination regimen to induce mucosal immunity while maintaining systemic immunity. Furthermore, the IM + IN regimen prevented virus transmission in a golden Syrian hamster co-caging model. Taken together, we show that IN vaccination with VSV-ΔG-spike, either as a homologous IN + IN regimen or as a boost following IM vaccination, has a favorable potential over IM vaccination in inducing efficient mucosal immunity, long-term protection and preventing virus transmission.

2.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215193

RESUMEN

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Asunto(s)
Inmunidad Innata , Interleucina-33 , Ratones , Animales , Linfocitos , Células en Penacho , Alarminas , Modelos Animales de Enfermedad , Fibroblastos , Dexametasona/farmacología
4.
Dev Cell ; 58(23): 2652-2665.e6, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37683631

RESUMEN

The pituitary is the master neuroendocrine gland, which regulates body homeostasis. It consists of the anterior pituitary/adenohypophysis harboring hormones producing cells and the posterior pituitary/neurohypophysis, which relays the passage of hormones from the brain to the periphery. It is accepted that the adenohypophysis originates from the oral ectoderm (Rathke's pouch), whereas the neural ectoderm contributes to the neurohypophysis. Single-cell transcriptomics of the zebrafish pituitary showed that cyp26b1-positive astroglial pituicytes of the neurohypophysis and prop1-positive adenohypophyseal progenitors expressed common markers implying lineage relatedness. Genetic tracing identifies that, in contrast to the prevailing dogma, neural plate precursors of zebrafish (her4.3+) and mouse (Sox1+) contribute to both neurohypophyseal and a subset of adenohypophyseal cells. Pituicyte-derived retinoic-acid-degrading enzyme Cyp26b1 fine-tunes differentiation of prop1+ progenitors into hormone-producing cells. These results challenge the notion that adenohypophyseal cells are exclusively derived from non-neural ectoderm and demonstrate that crosstalk between neuro- and adeno-hypophyseal cells affects differentiation of pituitary cells.


Asunto(s)
Neurohipófisis , Ratones , Animales , Pez Cebra , Placa Neural , Ácido Retinoico 4-Hidroxilasa , Hormonas
5.
Nature ; 622(7981): 164-172, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37674082

RESUMEN

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Asunto(s)
Autotolerancia , Linfocitos T , Timo , Animales , Ratones , Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Autotolerancia/inmunología , Autotolerancia/fisiología , Linfocitos T/clasificación , Linfocitos T/citología , Linfocitos T/inmunología , Timo/citología , Timo/inmunología , Tejido Parenquimatoso , Células Musculares , Células Endocrinas , Cromatina , Transcripción Genética , Ghrelina
6.
Elife ; 122023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744866

RESUMEN

The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.


Asunto(s)
Multiómica , Husos Musculares , Ratones , Animales , Husos Musculares/fisiología , Proteómica , Músculo Esquelético/fisiología , Propiocepción/fisiología
7.
Open Biol ; 12(9): 220206, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36168804

RESUMEN

Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.


Asunto(s)
Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , ADN Complementario/genética , Exones , Perfilación de la Expresión Génica , Ratones , Isoformas de Proteínas/genética , ARN/genética , Análisis de Secuencia de ARN , Transcriptoma , Regiones no Traducidas
8.
Proc Natl Acad Sci U S A ; 119(30): e2120339119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35857873

RESUMEN

During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , Proteínas de Neoplasias , Proteínas del Tejido Nervioso , Respuesta de Proteína Desplegada , Animales , Codón Iniciador , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/antagonistas & inhibidores , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Biosíntesis de Proteínas , Respuesta de Proteína Desplegada/genética
9.
Haematologica ; 107(11): 2548-2561, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35199506

RESUMEN

Pre-leukemic clones carrying DNMT3A mutations have a selective advantage and an inherent chemoresistance, however the basis for this phenotype has not been fully elucidated. Mutations affecting the gene TP53 occur in pre-leukemic hematopoietic stem/progenitor cells (preL-HSPC) and lead to chemoresistance. Many of these mutations cause a conformational change and some of them were shown to enhance self-renewal capacity of preL-HSPC. Intriguingly, a misfolded P53 was described in AML blasts that do not harbor mutations in TP53, emphasizing the dynamic equilibrium between wild-type (WT) and "pseudo-mutant" conformations of P53. By combining single cell analyses and P53 conformation-specific monoclonal antibodies we studied preL-HSPC from primary human DNMT3A-mutated AML samples. We found that while leukemic blasts express mainly the WT conformation, in preL-HSPC the pseudo-mutant conformation is the dominant. HSPC from non-leukemic samples expressed both conformations to a similar extent. In a mouse model we found a small subset of HSPC with a dominant pseudo-mutant P53. This subpopulation was significantly larger among DNMT3AR882H-mutated HSPC, suggesting that while a pre-leukemic mutation can predispose for P53 misfolding, additional factors are involved as well. Treatment with a short peptide that can shift the dynamic equilibrium favoring the WT conformation of P53, specifically eliminated preL-HSPC that had dysfunctional canonical P53 pathway activity as reflected by single cell RNA sequencing. Our observations shed light upon a possible targetable P53 dysfunction in human preL-HSPC carrying DNMT3A mutations. This opens new avenues for leukemia prevention.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Células Clonales , Leucemia Mieloide Aguda/genética , Mutación , Fenotipo , Proteína p53 Supresora de Tumor/genética , Proteínas Mutantes , Pliegue de Proteína
10.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477806

RESUMEN

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.


Asunto(s)
Homeostasis/genética , Mutación/genética , Factores de Transcripción/genética , Animales , Autoinmunidad/genética , Cromatina/genética , Disección/métodos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Modelos Animales , Proteína AIRE
11.
iScience ; 24(1): 101977, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33458622

RESUMEN

Cell-cell communication is an essential attribute of multicellular organisms. The effects of perturbed communication were studied in septal protein mutants of the heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 model organism. Strains bearing sepJ and sepJ/fraC/fraD deletions showed differences in growth, pigment absorption spectra, and spatial patterns of expression of the hetR gene encoding a heterocyst differentiation master regulator. Global changes in gene expression resulting from deletion of those genes were mapped by RNA sequencing analysis of wild-type and mutant strains, both under nitrogen-replete and nitrogen-poor conditions. The effects of sepJ and fraC/fraD deletions were non-additive, and perturbed cell-cell communication led to significant changes in global gene expression. Most significant effects, related to carbon metabolism, included increased expression of genes encoding carbon uptake systems and components of the photosynthetic apparatus, as well as decreased expression of genes encoding cell wall components related to heterocyst differentiation and to polysaccharide export.

12.
Elife ; 102021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448926

RESUMEN

The mechanical challenge of attaching elastic tendons to stiff bones is solved by the formation of a unique transitional tissue. Here, we show that murine tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, under regulation of shared regulatory elements and Krüppel-like factors (KLFs) transcription factors. High-throughput bulk and single-cell RNA sequencing of humeral attachment cells revealed expression of hundreds of chondrogenic and tenogenic genes, which was validated by in situ hybridization and single-molecule ISH. ATAC sequencing showed that attachment cells share accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis revealed enhancer signatures for most of these regions. Transgenic mouse enhancer reporter assays verified the shared activity of some of these enhancers. Finally, integrative chromatin and motif analyses and transcriptomic data implicated KLFs as regulators of attachment cells. Indeed, blocking expression of both Klf2 and Klf4 in developing limb mesenchyme impaired their differentiation.


Asunto(s)
Condrocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Tenocitos/metabolismo , Transcriptoma , Animales , Huesos , Femenino , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Tendones
13.
Immunity ; 53(5): 1033-1049.e7, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33049219

RESUMEN

Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.


Asunto(s)
Endotoxinas/inmunología , Interleucina-10/metabolismo , Microglía/inmunología , Microglía/metabolismo , Animales , Biomarcadores , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Inmunofenotipificación , Interleucina-10/genética , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Lipopolisacáridos/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones
14.
Cell Rep ; 31(5): 107591, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375045

RESUMEN

The emerging appreciation of plasticity among pancreatic lineages has created interest in harnessing cellular reprogramming for ß cell replacement therapy of diabetes. Current reprogramming methodologies are inefficient, largely because of a limited understanding of the underlying mechanisms. Using an in vitro reprogramming system, we reveal the transcriptional repressor RE-1 silencing transcription factor (REST) as a barrier for ß cell gene expression in the reprogramming of pancreatic exocrine cells. We observe that REST-bound loci lie adjacent to the binding sites of multiple key ß cell transcription factors, including PDX1. Accordingly, a loss of REST function combined with PDX1 expression results in the synergistic activation of endocrine genes. This is accompanied by increased histone acetylation and PDX1 binding at endocrine gene loci. Collectively, our data identify a mechanism for REST activity involving the prevention of PDX1-mediated activation of endocrine genes and uncover REST downregulation and the resulting chromatin alterations as key events in ß cell reprogramming.


Asunto(s)
Reprogramación Celular/fisiología , Células Endocrinas/metabolismo , Sistema Endocrino/metabolismo , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Diferenciación Celular/fisiología , Elementos de Facilitación Genéticos/genética , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo
15.
PLoS One ; 15(5): e0233044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453801

RESUMEN

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Sistema Mononuclear Fagocítico/inmunología , Animales , Diferenciación Celular , Colitis/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Receptores de Interleucina-10/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo
16.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31915267

RESUMEN

The neurohypophysis (NH), located at the posterior lobe of the pituitary, is a major neuroendocrine tissue, which mediates osmotic balance, blood pressure, reproduction, and lactation by means of releasing the neurohormones oxytocin (OXT) and arginine-vasopressin (AVP) from the brain into the peripheral blood circulation. The major cellular components of the NH are hypothalamic axonal termini, fenestrated endothelia and pituicytes, the resident astroglia. However, despite the physiological importance of the NH, the exact molecular signature defining neurohypophyseal cell types and in particular the pituicytes, remains unclear. Using single-cell RNA sequencing (scRNA-Seq), we captured seven distinct cell types in the NH and intermediate lobe (IL) of adult male mouse. We revealed novel pituicyte markers showing higher specificity than previously reported. Bioinformatics analysis demonstrated that pituicyte is an astrocytic cell type whose transcriptome resembles that of tanycyte. Single molecule in situ hybridization revealed spatial organization of the major cell types implying intercellular communications. We present a comprehensive molecular and cellular characterization of neurohypophyseal cell types serving as a valuable resource for further functional research.


Asunto(s)
Neurohipófisis , Animales , Arginina Vasopresina/metabolismo , Astrocitos/metabolismo , Masculino , Ratones , Neuroglía/metabolismo , Oxitocina , Neurohipófisis/metabolismo
17.
Elife ; 92020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31916932

RESUMEN

Monocytes are circulating short-lived macrophage precursors that are recruited on demand from the blood to sites of inflammation and challenge. In steady state, classical monocytes give rise to vasculature-resident cells that patrol the luminal side of the endothelium. In addition, classical monocytes feed macrophage compartments of selected organs, including barrier tissues, such as the skin and intestine, as well as the heart. Monocyte differentiation under conditions of inflammation has been studied in considerable detail. In contrast, monocyte differentiation under non-inflammatory conditions remains less well understood. Here we took advantage of a combination of cell ablation and precursor engraftment to investigate the generation of gut macrophages from monocytes. Collectively, we identify factors associated with the gradual adaptation of monocytes to tissue residency. Moreover, comparison of monocyte differentiation into the colon and ileum-resident macrophages revealed the graduated acquisition of gut segment-specific gene expression signatures.


Asunto(s)
Diferenciación Celular , Colon/fisiología , Íleon/fisiología , Macrófagos/metabolismo , Monocitos/citología , Animales , Ratones , Organismos Libres de Patógenos Específicos
18.
Front Plant Sci ; 11: 635139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613593

RESUMEN

Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.

19.
Mol Cell ; 76(4): 617-631.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31564557

RESUMEN

Spt5 is a conserved and essential transcription elongation factor that promotes promoter-proximal pausing, promoter escape, elongation, and mRNA processing. Spt5 plays specific roles in the transcription of inflammation and stress-induced genes and tri-nucleotide expanded-repeat genes involved in inherited neurological pathologies. Here, we report the identification of Spt5-Pol II small-molecule inhibitors (SPIs). SPIs faithfully reproduced Spt5 knockdown effects on promoter-proximal pausing, NF-κB activation, and expanded-repeat huntingtin gene transcription. Using SPIs, we identified Spt5 target genes that responded with profoundly diverse kinetics. SPIs uncovered the regulatory role of Spt5 in metabolism via GDF15, a food intake- and body weight-inhibitory hormone. SPIs further unveiled a role for Spt5 in promoting the 3' end processing of histone genes. While several SPIs affect all Spt5 functions, a few inhibit a single one, implying uncoupling and selective targeting of Spt5 activities. SPIs expand the understanding of Spt5-Pol II functions and are potential drugs against metabolic and neurodegenerative diseases.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , ARN Polimerasa II/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Factores de Elongación Transcripcional/antagonistas & inhibidores , Regiones no Traducidas 3' , Animales , Núcleo Celular/enzimología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Descubrimiento de Drogas/métodos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Huntingtina/biosíntesis , Proteína Huntingtina/genética , Células Jurkat , Células MCF-7 , Ratones Transgénicos , Mutación , FN-kappa B/biosíntesis , FN-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
20.
Development ; 146(14)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31221640

RESUMEN

Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9+/Scx+ superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9+/Scx+ progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Huesos/anatomía & histología , Huesos/embriología , Genes del Desarrollo , Proteínas de Homeodominio/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Óseo/genética , Huesos/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes del Desarrollo/genética , Proteínas de Homeodominio/metabolismo , Ligamentos/anatomía & histología , Ligamentos/embriología , Ligamentos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Embarazo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Tendones/anatomía & histología , Tendones/embriología , Tendones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...