Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2005): 20231022, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37583319

RESUMEN

When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.


Asunto(s)
Ecosistema , Plantas , Filogenia , Australia , Herbivoria , Especies Introducidas
2.
Microbes Environ ; 37(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965097

RESUMEN

Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the "stinkbug-associated beneficial and environmental (SBE)" group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-ß. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-ß. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A mole-cular phylogenetic ana-lysis of the 16S rRNA gene demonstrated that SBE-ß was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the "Coreoidea clade" occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-ß-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-ß outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.


Asunto(s)
Burkholderia , Heterópteros , Tracheophyta , Animales , Burkholderia/genética , Filogenia , ARN Ribosómico 16S/genética , Tracheophyta/genética
3.
Curr Opin Insect Sci ; 38: 40-47, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32088650

RESUMEN

A key element in weed biological control is the selection of a biological control agent that minimizes the risks of non-target attack and indirect effects on the recipient community. Network ecology is a promising approach that could help decipher tritrophic interactions in both the native and the invaded ranges, to complement quarantine-based host-specificity tests and gain insights on potential interactions of biological control agents. This review highlights practical questions addressed by networks, including 1) biological control agent selection, based on specialization indices, 2) risk assessment of biological control agent release into a novel environment, via particular patterns of association such as apparent competition between agent(s) and native herbivore(s), 3) network comparisons through structural metrics, 4) potential of network modelling and 5) limits of network construction methods.


Asunto(s)
Ecosistema , Herbivoria , Insectos/fisiología , Control Biológico de Vectores/métodos , Control de Malezas/métodos , Animales , Conducta Alimentaria , Medición de Riesgo/métodos
4.
PLoS One ; 11(12): e0168370, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27959958

RESUMEN

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management.


Asunto(s)
Himenópteros/genética , Alelos , Animales , Teorema de Bayes , Diferenciación Celular , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Variación Genética , Geografía , Masculino , Repeticiones de Microsatélite/genética , Familia de Multigenes , Control de Plagas , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...