Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Intervalo de año de publicación
2.
Antibiotics (Basel) ; 11(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326819

RESUMEN

The development of RNA-based anti-infectives has gained interest with the successful application of mRNA-based vaccines. Small RNAs are molecules of RNA of <200 nucleotides in length that may control the expression of specific genes. Small RNAs include small interference RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), or microRNAs (miRNAs). Notably, the role of miRNAs on the post-transcriptional regulation of gene expression has been studied in detail in the context of cancer and many other genetic diseases. However, it is also becoming apparent that some human miRNAs possess important antimicrobial roles by silencing host genes essential for the progress of bacterial or viral infections. Therefore, their potential use as novel antimicrobial therapies has gained interest during the last decade. The challenges of the transport and delivery of miRNAs to target cells are important, but recent research with exosomes is overcoming the limitations in RNA-cellular uptake, avoiding their degradation. Therefore, in this review, we have summarised the latest developments in the exosomal delivery of miRNA-based therapies, which may soon be another complementary treatment to pathogen-targeted antibiotics that could help solve the problem caused by multidrug-resistant bacteria.

4.
Methods Mol Biol ; 2296: 249-261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977453

RESUMEN

Antibiotherapy is the main therapeutic strategy in the fight against bacterial pathogens. However, the misuse of antimicrobials has led to the appearance of antimicrobial-resistant strains. The rate at which we isolate multidrug-resistant bacteria is now much faster than the discovery rate of new antimicrobials. Therefore, the repurposing of approved drugs against multidrug-resistant bacteria is a very promising strategy to find new therapies against these pathogens. Some antibiotics generate oxidative stress as part of their mechanism of action. We have recently applied different methods to find new oxidative stress-producing antimicrobials with synergistic action against intracellular pathogens. Here, we detail several procedures that could be used to identify oxidative stress-producing antimicrobials with a synergistic mechanism of action.


Asunto(s)
Antibacterianos/metabolismo , Estrés Oxidativo/fisiología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Línea Celular , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana
5.
Pathogens ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498299

RESUMEN

Staphylococcal infections are a widespread cause of disease in humans. In particular, S. aureus is a major causative agent of infection in clinical medicine. In addition, these bacteria can produce a high number of staphylococcal enterotoxins (SE) that may cause food intoxications. Apart from S. aureus, many coagulase-negative Staphylococcus spp. could be the source of food contamination. Thus, there is an active research work focused on developing novel preventative interventions based on food supplements to reduce the impact of staphylococcal food poisoning. Interestingly, many plant-derived compounds, such as polyphenols, flavonoids, or terpenoids, show significant antimicrobial activity against staphylococci, and therefore these compounds could be crucial to reduce the incidence of food intoxication in humans. Here, we reviewed the most promising strategies developed to prevent staphylococcal food poisoning.

6.
Antibiotics (Basel) ; 9(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261022

RESUMEN

Probiotics have been shown to bind to host receptors, which are important for pathogen adhesion and induce the host's production of defence factors. They can activate the goblet-cell-derived production of mucins, a major component of the mucus layer and a physical barrier participating in limiting the proximity of microorganisms to the epithelial layer. In the last decade, Bacillus spp. strains have gained interest in human and animal health due to their tolerance and stability under gastrointestinal tract conditions. Moreover, Bacillus spp. strains can also produce various antimicrobial peptides that can support their use as commercial probiotic supplements and functional foods. The present study aimed to evaluate and determine the ability of selected Bacillus spp. strains to inhibit the growth of enterotoxigenic Escherichia coli (ETEC) F4 and to reduce binding of ETEC F4 to HT29-16E (mucus-secreting and goblet-like) human intestinal cells. Moreover, mucus production in the HT29 cells in the presence of the Bacillus spp. strains was quantified by ELISA. Bacillus spp. strains (CHCC 15076, CHCC 15516, CHCC 15541, and CHCC 16872) significantly inhibited the growth of ETEC F4. Moreover, the ability of the probiotic Bacillus spp. strains to stimulate mucin release was highly strain dependent. The treatment with Bacillus subtilis CHCC 15541 resulted in a significant increase of both MUC2 and MUC3 in HT29-16E cells. Therefore, this strain could be an up-and-coming candidate for developing commercial probiotic supplements to prevent infections caused by ETEC F4 and, potentially, other pathogens.

7.
Antibiotics (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076497

RESUMEN

The genus Staphylococcus encompasses many species that may be pathogenic to both humans and farm animals. These bacteria have the potential to acquire multiple resistant traits to the antimicrobials currently used in the veterinary or medical settings. These pathogens may commonly cause zoonoses, and the infections they cause are becoming difficult to treat due to antimicrobial resistance. Therefore, the development of novel alternative treatments to traditional antibiotherapy has gained interest in recent years. Here, we reviewed the most promising therapeutic strategies developed to control staphylococcal infections in the veterinary field to overcome antibiotic resistance.

8.
Antibiotics (Basel) ; 9(9)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872158

RESUMEN

Tuberculosis is the leading cause of death, worldwide, due to a bacterial pathogen. This respiratory disease is caused by the intracellular pathogen Mycobacterium tuberculosis and produces 1.5 million deaths every year. The incidence of tuberculosis has decreased during the last decade, but the emergence of MultiDrug-Resistant (MDR-TB) and Extensively Drug-Resistant (XDR-TB) strains of M. tuberculosis is generating a new health alarm. Therefore, the development of novel therapies based on repurposed drugs against MDR-TB and XDR-TB have recently gathered significant interest. Recent evidence, focused on the role of host molecular factors on M. tuberculosis intracellular survival, allowed the identification of new host-directed therapies. Interestingly, the mechanism of action of many of these therapies is linked to the activation of autophagy (e.g., nitazoxanide or imatinib) and other well-known molecular pathways such as apoptosis (e.g., cisplatin and calycopterin). Here, we review the latest developments on the identification of novel antimicrobials against tuberculosis (including avermectins, eltrombopag, or fluvastatin), new host-targeting therapies (e.g., corticoids, fosfamatinib or carfilzomib) and the host molecular factors required for a mycobacterial infection that could be promising targets for future drug development.

9.
Antioxidants (Basel) ; 9(5)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357394

RESUMEN

Antimicrobial resistance is becoming one of the most important human health issues. Accordingly, the research focused on finding new antibiotherapeutic strategies is again becoming a priority for governments and major funding bodies. The development of treatments based on the generation of oxidative stress with the aim to disrupt the redox defenses of bacterial pathogens is an important strategy that has gained interest in recent years. This approach is allowing the identification of antimicrobials with repurposing potential that could be part of combinatorial chemotherapies designed to treat infections caused by recalcitrant bacterial pathogens. In addition, there have been important advances in the identification of novel plant and bacterial secondary metabolites that may generate oxidative stress as part of their antibacterial mechanism of action. Here, we revised the current status of this emerging field, focusing in particular on novel oxidative stress-generating compounds with the potential to treat infections caused by intracellular bacterial pathogens.

10.
Vet Res ; 51(1): 38, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156317

RESUMEN

Rhodococcus equi is an intracellular veterinary pathogen that is becoming resistant to current antibiotherapy. Genes involved in preserving redox homeostasis could be promising targets for the development of novel anti-infectives. Here, we studied the role of an extracellular thioredoxin (Etrx3/REQ_13520) in the resistance to phagocytosis. An etrx3-null mutant strain was unable to survive within macrophages, whereas the complementation with the etrx3 gene restored its intracellular survival rate. In addition, the deletion of etrx3 conferred to R. equi a high susceptibility to sodium hypochlorite. Our results suggest that Etrx3 is essential for the resistance of R. equi to specific oxidative agents.


Asunto(s)
Infecciones por Actinomycetales/veterinaria , Proteínas Bacterianas/genética , Macrófagos/microbiología , Fagocitosis , Rhodococcus equi/genética , Tiorredoxinas/genética , Infecciones por Actinomycetales/inmunología , Animales , Proteínas Bacterianas/metabolismo , Ratones , Mutación , Tiorredoxinas/metabolismo
11.
Antioxidants (Basel) ; 9(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012850

RESUMEN

: Rhodococcus equi is a facultative intracellular pathogen that causes infections in foals and many other animals such as pigs, cattle, sheep, and goats. Antibiotic resistance is rapidly rising in horse farms, which makes ineffective current antibiotic treatments based on a combination of macrolides and rifampicin. Therefore, new therapeutic strategies are urgently needed to treat R. equi infections caused by antimicrobial resistant strains. Here, we employed a R. equi mycoredoxin-null mutant strain highly susceptible to oxidative stress to screen for novel ROS-generating antibiotics. Then, we used the well-characterized Mrx1-roGFP2 biosensor to confirm the redox stress generated by the most promising antimicrobial agents identified in our screening. Our results suggest that different combinations of antibacterial compounds that elicit oxidative stress are promising anti-infective strategies against R. equi. In particular, the combination of macrolides with ROS-generating antimicrobial compounds such as norfloxacin act synergistically to produce a potent antibacterial effect against R. equi. Therefore, our screening approach could be applied to identify novel ROS-inspired therapeutic strategies against intracellular pathogens.

12.
Antibiotics (Basel) ; 8(4)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795127

RESUMEN

Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics-vancomycin, daptomycin, and linezolid-as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.

13.
Antioxidants (Basel) ; 8(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731720

RESUMEN

Rhodococcus equi is a facultative intracellular pathogen that can survive within macrophages of a wide variety of hosts, including immunosuppressed humans. Current antibiotherapy is often ineffective, and novel therapeutic strategies are urgently needed to tackle infections caused by this pathogen. In this study, we identified three mycoredoxin-encoding genes (mrx) in the genome of R. equi, and we investigated their role in virulence. Importantly, the intracellular survival of a triple mrx-null mutant (Δmrx1Δmrx2Δmrx3) in murine macrophages was fully impaired. However, each mycoredoxin alone could restore the intracellular proliferation rate of R. equi Δmrx1Δmrx2Δmrx3 to wild type levels, suggesting that these proteins could have overlapping functions during host cell infection. Experiments with the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) biosensor confirmed that R. equi was exposed to redox stress during phagocytosis, and mycoredoxins were involved in preserving the redox homeostasis of the pathogen. Thus, we studied the importance of each mycoredoxin for the resistance of R. equi to different oxidative stressors. Interestingly, all mrx genes did have overlapping roles in the resistance to sodium hypochlorite. In contrast, only mrx1 was essential for the survival against high concentrations of nitric oxide, while mrx3 was not required for the resistance to hydrogen peroxide. Our results suggest that all mycoredoxins have important roles in redox homeostasis, contributing to the pathogenesis of R. equi and, therefore, these proteins may be considered interesting targets for the development of new anti-infectives.

14.
Sci Rep ; 9(1): 15435, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659191

RESUMEN

During patient colonization, Staphylococcus aureus is able to invade and proliferate within human cells to evade the immune system and last resort drugs such as vancomycin. Hijacking specific host molecular factors and/or pathways is necessary for pathogens to successfully establish an intracellular infection. In this study, we employed an unbiased shRNA screening coupled with ultra-fast sequencing to screen 16,000 human genes during S. aureus infection and we identified several host genes important for this intracellular pathogen. In addition, we interrogated our screening results to find novel host-targeted therapeutics against intracellular S. aureus. We found that silencing the human gene TRAM2 resulted in a significant reduction of intracellular bacterial load while host cell viability was restored, showing its importance during intracellular infection. Furthermore, TRAM2 is an interactive partner of the endoplasmic reticulum SERCA pumps and treatment with the SERCA-inhibitor Thapsigargin halted intracellular MRSA survival. Our results suggest that Thapsigargin could be repurposed to tackle S. aureus host cell infection in combination with conventional antibiotics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glicoproteínas de Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Tapsigargina/farmacología , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología
15.
Metabolites ; 9(7)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330837

RESUMEN

As a facultative intracellular pathogen, Staphylococcus aureus is able to invade and proliferate within many types of mammalian cells. Intracellular bacterial replication relies on host nutrient supplies and, therefore, cell metabolism is closely bound to intracellular infection. Here, we investigated how S. aureus invasion affects the host membrane-bound fatty acids. We quantified the relative levels of fatty acids and their labelling pattern after intracellular infection by gas chromatography-mass spectrometry (GC-MS). Interestingly, we observed that the levels of three host fatty acids-docosanoic, eicosanoic and palmitic acids-were significantly increased in response to intracellular S. aureus infection. Accordingly, labelling carbon distribution was also affected in infected cells, in comparison to the uninfected control. In addition, treatment of HeLa cells with these three fatty acids showed a cytoprotective role by directly reducing S. aureus growth.

16.
Sci Rep ; 9(1): 4876, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890742

RESUMEN

Host-directed therapeutics are a promising anti-infective strategy against intracellular bacterial pathogens. Repurposing host-targeted drugs approved by the FDA in the US, the MHRA in the UK and/or regulatory equivalents in other countries, is particularly interesting because these drugs are commercially available, safe doses are documented and they have been already approved for other clinical purposes. In this study, we aimed to identify novel therapies against intracellular Staphylococcus aureus, an opportunistic pathogen that is able to exploit host molecular and metabolic pathways to support its own intracellular survival. We screened 133 host-targeting drugs and found three host-directed tyrosine kinase inhibitors (Ibrutinib, Dasatinib and Crizotinib) that substantially impaired intracellular bacterial survival. We found that Ibrutinib significantly increased host cell viability after S. aureus infection via inhibition of cell invasion and intracellular bacterial proliferation. Using phosphoproteomics data, we propose a putative mechanism of action of Ibrutinib involving several host factors, including EPHA2, C-JUN and NWASP. We confirmed the importance of EPHA2 for staphylococcal infection in an EPHA2-knock-out cell line. Our study serves as an important example of feasibility for identifying host-directed therapeutics as candidates for repurposing.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Línea Celular , Citoplasma/efectos de los fármacos , Citoplasma/microbiología , Reposicionamiento de Medicamentos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
17.
Arch Toxicol ; 93(2): 341-353, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30552463

RESUMEN

Acetaminophen (APAP) is one of the most commonly used analgesics worldwide, and overdoses are associated with lactic acidosis, hepatocyte toxicity, and acute liver failure due to oxidative stress and mitochondrial dysfunction. Hepatoma cell lines typically lack the CYP450 activity to generate the reactive metabolite of APAP observed in vivo, but are still subject to APAP cytotoxicity. In this study, we employed metabolic profiling and isotope labelling approaches to investigate the metabolic impact of acute exposure to cytotoxic doses of APAP on the widely used HepG2 cell model. We found that APAP exposure leads to limited cellular death and substantial growth inhibition. Metabolically, we observed an up-regulation of glycolysis and lactate production with a concomitant reduction in carbon from glucose entering the pentose-phosphate pathway and the TCA cycle. This was accompanied by a depletion of cellular NADPH and a reduction in the de novo synthesis of fatty acids and the amino acids serine and glycine. These events were not associated with lower reduced glutathione levels and no glutathione conjugates were seen in cell extracts. Co-treatment with a specific inhibitor of the lactate/H+ transporter MCT1, AZD3965, led to increased apoptosis in APAP-treated cells, suggesting that lactate accumulation could be a cause of cell death in this model. In conclusion, we show that APAP toxicity in HepG2 cells is largely independent of oxidative stress, and is linked instead to a decoupling of glycolysis from the TCA cycle, lactic acidosis, reduced NADPH production, and subsequent suppression of the anabolic pathways required for rapid growth.


Asunto(s)
Acetaminofén/toxicidad , Glucólisis/efectos de los fármacos , Metabolismo/efectos de los fármacos , NADP/metabolismo , Supervivencia Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Sinergismo Farmacológico , Glutatión/metabolismo , Células Hep G2 , Humanos , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Pirimidinonas/toxicidad , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Tiofenos/toxicidad , Pruebas de Toxicidad
18.
Front Immunol ; 9: 2752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555461

RESUMEN

The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine-one at time 0 and the second after 24 h-showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1ß did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.


Asunto(s)
Interleucina-16/inmunología , Interleucina-17/inmunología , Monocitos/inmunología , Receptor Activador Expresado en Células Mieloides 1/inmunología , Animales , Inflamación/inmunología , Inflamación/patología , Ratones , Monocitos/patología , Neutrófilos/inmunología , Neutrófilos/patología
19.
mSphere ; 3(4)2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089650

RESUMEN

Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of phagocytic and nonphagocytic cells. During intracellular infection, S. aureus is capable of subverting xenophagy and escaping to the cytosol of the host cell. Furthermore, drug-induced autophagy facilitates the intracellular replication of S. aureus, but the reasons behind this are unclear. Here, we have studied the host central carbon metabolism during S. aureus intracellular infection. We found extensive metabolic rerouting and detected several distinct metabolic changes that suggested starvation-induced autophagic flux in infected cells. These changes included increased uptake but lower intracellular levels of glucose and low abundance of several essential amino acids, as well as markedly upregulated glutaminolysis. Furthermore, we show that AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK) phosphorylation levels are significantly increased in infected cells. Interestingly, while autophagy was activated in response to S. aureus invasion, most of the autophagosomes detected in infected cells did not contain bacteria, suggesting that S. aureus induces the autophagic flux during cell invasion for energy generation and nutrient scavenging. Accordingly, AMPK inhibition halted S. aureus intracellular proliferation.IMPORTANCEStaphylococcus aureus escapes from immune recognition by invading a wide range of human cells. Once the pathogen becomes intracellular, the most important last resort antibiotics are not effective. Therefore, novel anti-infective therapies against intracellular S. aureus are urgently needed. Here, we have studied the physiological changes induced in the host cells by S. aureus during its intracellular proliferation. This is important, because the pathogen exploits the host cell's metabolism for its own proliferation. We find that S. aureus severely depletes glucose and amino acid pools, which leads to increased breakdown of glutamine by the host cell in an attempt to meet its own metabolic needs. All of these metabolic changes activate autophagy in the host cell for nutrient scavenging and energy generation. The metabolic activation of autophagy could be used by the pathogen to sustain its own intracellular survival, making it an attractive target for novel anti-infectives.


Asunto(s)
Autofagia , Carbono/metabolismo , Citoplasma/microbiología , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Staphylococcus aureus/crecimiento & desarrollo , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Regulación hacia Arriba
20.
Adv Appl Microbiol ; 99: 103-137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28438267

RESUMEN

Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (AsV) to arsenite (AsIII) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria.


Asunto(s)
Arsénico/metabolismo , Corynebacterium glutamicum/metabolismo , Arsénico/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica , Operón , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA