Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791676

RESUMEN

Cementoplasty is a minimally invasive procedure that consists of injecting a bone substitute into the tumor lesion to provide bone reinforcement and alleviate pain. This study aimed to demonstrate the feasibility, safety, and efficacy of cementoplasty with a calcium phosphate cement in osteosarcoma to reduce pain and preserve limb function. Throughout the 6-month study, dogs received no adjuvant therapy, and dogs' evaluations included a clinical examination, monitoring of postoperative complications, radiographic follow-up, and assessment of limb function and pain scores. Out of 12 dogs enrolled, 10 were withdrawn before study completion due to deterioration in their general condition. Nine (9) dogs were followed until D28, six until D56, and two until D183. Compared to D0, more than 50% of the dogs showed improvement in both veterinarian and owner scores at their final visit. Throughout the study, 10 major and 4 minor complications were reported, all unrelated to the procedure. This open non-controlled study provides first evidence of the feasibility, safety, and efficacy of cementoplasty procedure using a calcium phosphate bone cement to relieve pain and preserve limb function in dogs suffering from appendicular osteosarcoma.

2.
J Feline Med Surg ; 24(10): e360-e369, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36074899

RESUMEN

OBJECTIVES: The aim of our study was to describe a biomechanical testing protocol to reproduce ex vivo craniodorsal hip luxation specific to the feline model, and evaluate the biomechanical properties of an intact hip joint compared with the fixation strength of two different techniques of extra-articular hip stabilisation. METHODS: Eighteen hip joints (femur and hemipelvis) were harvested from nine mature feline cadavers. CT was performed for each hip joint so that a biomechanical base specific to each joint morphotype could be created using computer-aided design. The biomechanical bases were then produced using a three-dimensional printer to secure the hip joints during testing. A total of 34 biomechanical compression tests were performed. Eighteen compression tests were performed in the control group, of which two fractured. The remaining 16 hip joints were then randomly assigned either to group A (hip joints stabilised with an extra-articular ultra-high molecular weight polyethylene (UHMWPE) implant secured by an interference screw [n = 8]) or to group B (hip joints stabilised with a UHMWPE iliofemoral suture [n = 8]). RESULTS: Mean ± SD yield, failure load and linear stiffness in the control group were 616 ± 168 N, 666 ± 158 N and 231 ± 50 N/mm, respectively. The relative fixation strength (% of intact joint) before hip luxation in groups A and B was 43.8% and 34.7%, respectively. No statistical difference was found between groups A and B for yield and failure load. However, the reoccurrence of craniodorsal hip luxation was higher in group B than in group A, in 5/8 and 0/8 tests, respectively. Moreover, in group A, the extra-articular UHMWPE implant induced caudodorsal hip luxation, reported as failure mode in 7/8 cases. CONCLUSIONS AND RELEVANCE: This modified biomechanical protocol for testing craniodorsal hip luxation in a feline model was validated as repeatable and with acceptable variance. The extra-articular UHMWPE implant stabilisation technique proved to be more efficient in avoiding reoccurrence of craniodorsal hip luxation than UHMWPE iliofemoral suture.


Asunto(s)
Enfermedades de los Gatos , Luxaciones Articulares , Animales , Fenómenos Biomecánicos , Tornillos Óseos , Cadáver , Gatos , Luxaciones Articulares/veterinaria , Polietilenos , Suturas
3.
Vet Med Int ; 2022: 5112274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35521052

RESUMEN

Traumatic vertebral fracture or luxation often results in spinal instability requiring surgical stabilization. This study describes the long-term outcome of spinal stabilization using a unilateral 5-hole 2-0 UniLock implant in eight dogs and two cats with trauma-induced thoracolumbar vertebral luxation/subluxation and presumed instability, as assessed by a combination of preoperative radiographs and MRI using a 3-compartment method. The UniLock plate was secured with four monocortical locking screws in adjacent vertebral bodies. Additional pins and facet screws were used in several patients. Postoperative radiographs and MRI studies showed restoration of the main spinal axis in all patients and satisfactory implantation of the screws in the vertebral bodies, with no intrusion in the vertebral canal or in the adjacent intervertebral disc spaces. Neurological status improved in nine patients six weeks postoperatively. Partial implant failure was detected in three patients with no long-term consequences. After 12 months, seven patients reached full recovery with no neurological deficit, two patients were euthanized (including one owing to an unrelated condition), and one remained paraparetic. The results of this study demonstrate that using a 2-0 UniLock implant to stabilize the thoracolumbar spine results in satisfactory long-term recovery in most dogs and cats with traumatic spinal luxation/subluxation and presumed instability. Complications may occur but do not require revision surgery and do not affect clinical outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA