Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006155

RESUMEN

Lignins released in the black liquors of kraft pulp mills are an underutilised source of aromatics. Due to their phenol oxidase activity, laccases from ligninolytic fungi are suitable biocatalysts to depolymerise kraft lignins, which are characterised by their elevated phenolic content. However, the alkaline conditions necessary to solubilise kraft lignins make it difficult to use fungal laccases whose activity is inherently acidic. We recently developed through enzyme-directed evolution high-redox potential laccases active and stable at pH 10. Here, the ability of these tailor-made alkaliphilic fungal laccases to oxidise, demethylate, and depolymerise eucalyptus kraft lignin at pH 10 is evidenced by the increment in the content of phenolic hydroxyl and carbonyl groups, the methanol released, and the appearance of lower molecular weight moieties after laccase treatment. Nonetheless, in a second assay carried out with higher enzyme and lignin concentrations, these changes were accompanied by a strong increase in the molecular weight and content of ß-O-4 and ß-5 linkages of the main lignin fraction, indicating that repolymerisation of the oxidised products prevails in one-pot reactions. To prevent it, we finally conducted the enzymatic reaction in a bench-scale reactor coupled to a membrane separation system and were able to prove the depolymerisation of kraft lignin by high-redox alkaliphilic laccase.

2.
Biotechnol Biofuels Bioprod ; 15(1): 149, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581887

RESUMEN

BACKGROUND: During the kraft process to obtain cellulosic pulp from wood, most of the lignin is removed by high-temperature alkaline cooking, released in the black liquors and usually incinerated for energy. However, kraft lignins are a valuable source of phenolic compounds that can be valorized in new bio-based products. The aim of this work is to develop laccases capable of working under the extreme conditions of high temperature and pH, typical of the industrial conversion of wood into kraft pulp and fibreboard, in order to provide extremophilic biocatalysts for depolymerising kraft lignin, and enzyme-assisted technologies for kraft pulp and fibreboard production. RESULTS: Through systematic enzyme engineering, combining enzyme-directed evolution and rational design, we changed the optimal pH of the laccase for oxidation of lignin phenols from acidic to basic, enhanced the catalytic activity at alkaline pH and increased the thermal tolerance of the enzyme by accumulating up to eight mutations in the protein sequence. The extremophilic laccase variants show maximum activity at 70 °C and oxidize kraft lignin at pH 10. Their integration into industrial-type processes saves energy and chemicals. As a pre-bleaching stage, the enzymes promote kraft pulp bleachability and significantly reduce the need for chlorine dioxide compared to the industrial sequence. Their application in wood chips during fibreboard production, facilitates the defibering stage, with less energy required. CONCLUSIONS: A set of new alkaliphilic and thermophilic fungal laccases has been developed to operate under the extreme conditions of high temperature and pH typical of industrial wood conversion processes. For the first time basidiomycete laccases of high-redox potential show activity on lignin-derived phenols and polymeric lignin at pH 10. Considering the extreme conditions of current industrial processes for kraft pulp and fibreboard production, the new tailor-made laccases constitute a step forward towards turning kraft pulp mills into biorefineries. Their use as biocatalysts in the wood conversion sector is expected to support the development of more environmentally sound and efficient processes, and more sustainable products.

3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362210

RESUMEN

Xylanases can boost pulp bleachability in Elemental Chlorine Free (ECF) processes, but their industrial implementation for producing bleached kraft pulps is not straightforward. It requires enzymes to be active and stable at the extreme conditions of alkalinity and high temperature typical of this industrial process; most commercial enzymes are unable to withstand these conditions. In this work, a novel highly thermo and alkaline-tolerant xylanase from Pseudothermotoga thermarum was overproduced in E. coli and tested as a bleaching booster of hardwood kraft pulps to save chlorine dioxide (ClO2) during ECF bleaching. The extremozyme-stage (EXZ) was carried out at 90 °C and pH 10.5 and optimised at lab scale on an industrial oxygen-delignified eucalyptus pulp, enabling us to save 15% ClO2 to reach the mill brightness, and with no detrimental effect on paper properties. Then, the EXZ-assisted bleaching sequence was validated at pilot scale under industrial conditions, achieving 25% ClO2 savings and reducing the generation of organochlorinated compounds (AOX) by 18%, while maintaining pulp quality and papermaking properties. Technology reproducibility was confirmed with another industrial kraft pulp from a mix of hardwoods. The new enzymatic technology constitutes a realistic step towards environmentally friendly production of kraft pulps through industrial integration of biotechnology.


Asunto(s)
Eucalyptus , Extremófilos , Escherichia coli , Reproducibilidad de los Resultados , Eucalyptus/química , Cloro , Papel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA