Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Muscle Nerve ; 69(6): 719-729, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593477

INTRODUCTION/AIMS: Biomarkers have shown promise in amyotrophic lateral sclerosis (ALS) research, but the quest for reliable biomarkers remains active. This study evaluates the effect of debamestrocel on cerebrospinal fluid (CSF) biomarkers, an exploratory endpoint. METHODS: A total of 196 participants randomly received debamestrocel or placebo. Seven CSF samples were to be collected from all participants. Forty-five biomarkers were analyzed in the overall study and by two subgroups characterized by the ALS Functional Rating Scale-Revised (ALSFRS-R). A prespecified model was employed to predict clinical outcomes leveraging biomarkers and disease characteristics. Causal inference was used to analyze relationships between neurofilament light chain (NfL) and ALSFRS-R. RESULTS: We observed significant changes with debamestrocel in 64% of the biomarkers studied, spanning pathways implicated in ALS pathology (63% neuroinflammation, 50% neurodegeneration, and 89% neuroprotection). Biomarker changes with debamestrocel show biological activity in trial participants, including those with advanced ALS. CSF biomarkers were predictive of clinical outcomes in debamestrocel-treated participants (baseline NfL, baseline latency-associated peptide/transforming growth factor beta1 [LAP/TGFß1], change galectin-1, all p < .01), with baseline NfL and LAP/TGFß1 remaining (p < .05) when disease characteristics (p < .005) were incorporated. Change from baseline to the last measurement showed debamestrocel-driven reductions in NfL were associated with less decline in ALSFRS-R. Debamestrocel significantly reduced NfL from baseline compared with placebo (11% vs. 1.6%, p = .037). DISCUSSION: Following debamestrocel treatment, many biomarkers showed increases (anti-inflammatory/neuroprotective) or decreases (inflammatory/neurodegenerative) suggesting a possible treatment effect. Neuroinflammatory and neuroprotective biomarkers were predictive of clinical response, suggesting a potential multimodal mechanism of action. These results offer preliminary insights that need to be confirmed.


Amyotrophic Lateral Sclerosis , Biomarkers , Neurofilament Proteins , Adult , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers/cerebrospinal fluid , Double-Blind Method , Neurofilament Proteins/cerebrospinal fluid , Treatment Outcome
2.
Muscle Nerve ; 65(3): 291-302, 2022 03.
Article En | MEDLINE | ID: mdl-34890069

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative illness with great unmet patient need. We aimed to evaluate whether mesenchymal stem cells induced to secrete high levels of neurotrophic factors (MSC-NTF), a novel autologous cell-therapy capable of targeting multiple pathways, could safely slow ALS disease progression. METHODS: This randomized, double-blind, placebo-controlled study enrolled ALS participants meeting revised El Escorial criteria, revised ALS Functional Rating Scale (ALSFRS-R) ≥25 (screening) and ≥3 ALSFRS-R points decline prior to randomization. Participants received three treatments of MSC-NTF or placebo intrathecally. The primary endpoint evaluated efficacy of MSC-NTF through a responder analysis and safety. A change in disease progression post-treatment of ≥1.25 points/mo defines a clinical response. A pre-specified analysis leveraged baseline ALSFRS-R of 35 as a subgroup threshold. RESULTS: Overall, MSC-NTF treatment was well tolerated; there were no safety concerns. Thirty-three percent of MSC-NTF and 28% of placebo participants met clinical response criteria at 28 wk (odds ratio [OR] = 1.33, P = .45); thus, the primary endpoint was not met. A pre-specified analysis of participants with baseline ALSFRS-R ≥ 35 (n = 58) showed a clinical response rate at 28 wk of 35% MSC-NTF and 16% placebo (OR = 2.6, P = .29). Significant improvements in cerebrospinal biomarkers of neuroinflammation, neurodegeneration, and neurotrophic factor support were observed with MSC-NTF, with placebo unchanged. DISCUSSION: The study did not reach statistical significance on the primary endpoint. However, a pre-specified subgroup suggests that MSC-NTF participants with less severe disease may have retained more function compared to placebo. Given the unmet patient need, the results of this trial warrant further investigation.


Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cells , Amyotrophic Lateral Sclerosis/diagnosis , Double-Blind Method , Humans , Nerve Growth Factors/metabolism , Transplantation, Autologous
3.
Neurology ; 93(24): e2294-e2305, 2019 12 10.
Article En | MEDLINE | ID: mdl-31740545

OBJECTIVE: To determine the safety and efficacy of mesenchymal stem cell (MSC)-neurotrophic factor (NTF) cells (NurOwn®, autologous bone marrow-derived MSCs, induced to secrete NTFs) delivered by combined intrathecal and intramuscular administration to participants with amyotrophic lateral sclerosis (ALS) in a phase 2 randomized controlled trial. METHODS: The study enrolled 48 participants randomized 3:1 (treatment: placebo). After a 3-month pretransplant period, participants received 1 dose of MSC-NTF cells (n = 36) or placebo (n = 12) and were followed for 6 months. CSF was collected before and 2 weeks after transplantation. RESULTS: The study met its primary safety endpoint. The rate of disease progression (Revised ALS Functional Rating Scale [ALSFRS-R] slope change) in the overall study population was similar in treated and placebo participants. In a prespecified rapid progressor subgroup (n = 21), rate of disease progression was improved at early time points (p < 0.05). To address heterogeneity, a responder analysis showed that a higher proportion of treated participants experienced ≥1.5 points/month ALSFRS-R slope improvement compared to placebo at all time points, and was significant in rapid progressors at 4 and 12 weeks (p = 0.004 and 0.046, respectively). CSF neurotrophic factors increased and CSF inflammatory biomarkers decreased in treated participants (p < 0.05) post-transplantation. CSF monocyte chemoattractant protein-1 levels correlated with ALSFRS-R slope improvement up to 24 weeks (p < 0.05). CONCLUSION: A single-dose transplantation of MSC-NTF cells is safe and demonstrated early promising signs of efficacy. This establishes a clear path forward for a multidose randomized clinical trial of intrathecal autologous MSC-NTF cell transplantation in ALS. CLASSIFICATION OF EVIDENCE: This phase II study provides Class I evidence.


Amyotrophic Lateral Sclerosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Nerve Growth Factors/cerebrospinal fluid , Adult , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Transplantation, Autologous
4.
JAMA Neurol ; 73(3): 337-44, 2016 Mar.
Article En | MEDLINE | ID: mdl-26751635

IMPORTANCE: Preclinical studies have shown that neurotrophic growth factors (NTFs) extend the survival of motor neurons in amyotrophic lateral sclerosis (ALS) and that the combined delivery of these neurotrophic factors has a strong synergistic effect. We have developed a culture-based method for inducing mesenchymal stem cells (MSCs) to secrete neurotrophic factors. These MSC-NTF cells have been shown to be protective in several animal models of neurodegenerative diseases. OBJECTIVE: To determine the safety and possible clinical efficacy of autologous MSC-NTF cells transplantation in patients with ALS. DESIGN, SETTING, AND PARTICIPANTS: In these open-label proof-of-concept studies, patients with ALS were enrolled between June 2011 and October 2014 at the Hadassah Medical Center in Jerusalem, Israel. All patients were followed up for 3 months before transplantation and 6 months after transplantation. In the phase 1/2 part of the trial, 6 patients with early-stage ALS were injected intramuscularly (IM) and 6 patients with more advanced disease were transplanted intrathecally (IT). In the second stage, a phase 2a dose-escalating study, 14 patients with early-stage ALS received a combined IM and IT transplantation of autologous MSC-NTF cells. INTERVENTIONS: Patients were administered a single dose of MSC-NTF cells. MAIN OUTCOMES AND MEASURES: The primary end points of the studies were safety and tolerability of this cell therapy. Secondary end points included the effects of the treatment on various clinical parameters, such as the ALS Functional Rating Scale-Revised score and the respiratory function. RESULTS: Among the 12 patients in the phase 1/2 trial and the 14 patients in the phase 2a trial aged 20 and 75 years, the treatment was found to be safe and well tolerated over the study follow-up period. Most of the adverse effects were mild and transient, not including any treatment-related serious adverse event. The rate of progression of the forced vital capacity and of the ALS Functional Rating Scale-Revised score in the IT (or IT+IM)-treated patients was reduced (from -5.1% to -1.2%/month percentage predicted forced vital capacity, P < .04 and from -1.2 to 0.6 ALS Functional Rating Scale-Revised points/month, P = .052) during the 6 months following MSC-NTF cell transplantation vs the pretreatment period. Of these patients, 13 (87%) were defined as responders to either ALS Functional Rating Scale-Revised or forced vital capacity, having at least 25% improvement at 6 months after treatment in the slope of progression. CONCLUSIONS AND RELEVANCE: The results suggest that IT and IM administration of MSC-NTF cells in patients with ALS is safe and provide indications of possible clinical benefits, to be confirmed in upcoming clinical trials. TRIAL REGISTRATION: clinicaltrials.gov Identifiers: NCT01051882 and NCT01777646.


Amyotrophic Lateral Sclerosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/metabolism , Outcome Assessment, Health Care , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Middle Aged , Transplantation, Autologous , Young Adult
5.
Stem Cells Dev ; 18(8): 1179-90, 2009 Oct.
Article En | MEDLINE | ID: mdl-19243240

Stem cell-based therapy is a promising treatment for neurodegenerative diseases. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells (MSC) into neurotrophic factors- secreting cells (NTF-SC), thus combining stem cell-based therapy with the NTF-based neuroprotection. These cells produce and secrete factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Conditioned medium of the NTF-SC that was applied to a neuroblastoma cell line (SH-SY5Y) 1 h before exposure to the neurotoxin 6-hydroxydopamine (6-OHDA) demonstrated marked protection. An efficacy study was conducted on the 6-OHDA-induced lesion, a rat model of Parkinson's disease. The cells, either MSC or NTF-SC, were transplanted on the day of 6-OHDA administration and amphetamine-induced rotations were measured as a primary behavior index. We demonstrated that when transplanted posterior to the 6-OHDA lesion, the NTF-SC ameliorated amphetamine-induced rotations by 45%. HPLC analysis demonstrated that 6-OHDA induced dopamine depletion to a level of 21% compared to the untreated striatum. NTF-SC inhibited dopamine depletion to a level of 72% of the contralateral striatum. Moreover, an MRI study conducted with iron-labeled cells, followed by histological verification, revealed that the engrafted cells migrated toward the lesion. In a histological assessment, we found that the cells induced regeneration in the damaged striatal dopaminergic nerve terminal network. We therefore conclude that the induced MSC have a therapeutic potential for neurodegenerative processes and diseases, both by the NTFs secretion and by the migratory trait toward the diseased tissue.


Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/metabolism , Parkinson Disease/metabolism , Parkinson Disease/therapy , Stem Cell Transplantation , Animals , Behavior, Animal/drug effects , Cells, Cultured , Disease Models, Animal , Humans , Magnetic Resonance Imaging , Male , Oxidopamine , Parkinson Disease/pathology , Rats , Rats, Sprague-Dawley
6.
J Mol Neurosci ; 39(1-2): 199-210, 2009 Sep.
Article En | MEDLINE | ID: mdl-19127447

Parkinson's disease (PD) is a neurodegenerative disorder with its motor phenomena due mostly to loss of dopamine-producing neurons in the substantia nigra. Pharmacological treatments aimed to increase the deficient dopaminergic neurotransmission are effective in ameliorating the cardinal symptoms, but none of these therapies is curative. It has been suggested that treatment with neurotrophic factors (NTFs) might protect and prevent death of the surviving dopaminergic neurons and induce proliferation of their axonal nerve terminals with reinnervations of the deafferented striatum. However, long-term delivery of such proteins into the CNS is problematic. We therefore aimed to differentiate ex vivo human bone marrow-derived mesenchymal stromal cells into astrocyte-like cells, capable of generating NTFs for future transplantation into basal ganglia of PD patients. Indeed, mesenchymal stromal cells treated with our novel astrocyte differentiation medium, present astrocyte-like morphology and express the astrocyte markers S100beta, glutamine synthetase and glial fibrillary acidic protein. Moreover, these astrocyte-like cells produce and secrete significant amounts of glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor as indicated by messenger RNA, real-time polymerase chain reaction, ELISA, and Western blot analyses. Such NTF-producing cells transplanted into the striatum of 6-hydroxydopamine-lesioned rats, a model of PD, produced a progressive reduction in the apomorphine-induced contralateral rotations as well as behavioral improvement in rotor-rod and the "sunflower seeds" eating motor tests. Histological assessments revealed that the engrafted cells survived and expressed astrocyte and human markers and acted to regenerate the damaged dopaminergic nerve terminal system. Findings indicate that our novel procedure to induce NTF-producing astrocyte-like cells derived from human bone marrow stromal cells might become a promising and feasible autologous transplantation strategy for PD.


Astrocytes/physiology , Bone Marrow Cells/physiology , Cell Differentiation/physiology , Mesenchymal Stem Cells/physiology , Parkinson Disease/therapy , Stromal Cells/physiology , Adult , Animals , Astrocytes/cytology , Behavior, Animal/physiology , Biomarkers/metabolism , Bone Marrow Cells/cytology , Brain/cytology , Brain/metabolism , Cells, Cultured , Humans , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nerve Growth Factors/metabolism , Neuropsychological Tests , Rats , Rats, Sprague-Dawley , Stromal Cells/cytology
7.
Neurosci Lett ; 419(1): 28-33, 2007 May 23.
Article En | MEDLINE | ID: mdl-17475405

Parkinson's disease (PD) is a neurodegenerative disorder, caused by a selective loss of dopaminergic neurons in the substantia nigra. In PD, the best therapeutic modalities cannot halt the degeneration. The selective hallmark pathology and the lack of effective treatment make PD an appropriate candidate for cell replacement therapy. Adult autologous bone-marrow-derived mesenchymal stem cells (MSCs) have been investigated as candidates for cell replacement strategies. Several laboratories, including ours, have induced MSCs into neuron-like cells demonstrating a variety of neuronal markers including dopaminergic characteristics, such as the expression of tyrosine hydroxylase (TH). This project aimed to induce MSCs into mature dopamine secreting cells and to generate a bioassay to evaluate the induction. For that purpose, we created a reporter vector containing a promoter of TH, the rate-limiting enzyme in the dopamine synthesis and red fluorescent protein DsRed2. Transfection of human neuroblastoma, dopamine synthesizing, SH-SY5Y cells confirmed the reliability of the constructed reporter plasmid. Following dopaminergic differentiation of the transfected human MSCs cells, TH expressing cells were identified and quantified using flow cytometry. Further study revealed that not only did the differentiated cells activate TH promoter but they also expressed TH protein and secreted dopamine. The reported results indicate that MSCs may be primed in vitro towards a dopaminergic fate offering the promise of innovative therapy for currently incurable human disorders, including PD.


Cell Differentiation/physiology , Dopamine/metabolism , Mesenchymal Stem Cells/physiology , Tyrosine 3-Monooxygenase/metabolism , Biological Assay/methods , Cell Line, Tumor , Flow Cytometry/methods , Gene Expression , Humans , Neuroblastoma , Transfection/methods
8.
Stem Cells Dev ; 15(2): 141-64, 2006 Apr.
Article En | MEDLINE | ID: mdl-16646662

Because of their unique attributes of plasticity and accessibility, bone marrow-derived mesenchymal stem cells (MSCs) may find use for therapy of neurodegenerative disorders. Our previous studies of adult human MSCs demonstrated that these cells express an extensive assortment of neural genes at a low but clearly detectable level. Here, we report expression of 12 neural genes, 8 genes related to the neuro-dopaminergic system, and 11 transcription factors with neural significance by human MSCs. Our results suggest that, as opposed to cells that do not express neural genes, human MSCs are predisposed to differentiate to neuronal and glial lineages, given the proper conditions. Our findings add a new dimension in which to view adult stem cell plasticity, and may explain the relative ease with which MSCs, transplanted into the central nervous system (CNS) differentiate to a variety of functional neural cell types. Our results further promote the possibility that adult human MSCs are promising candidates for cell-based therapy of neurodegenerative diseases.


Gene Expression/genetics , Mesenchymal Stem Cells/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Adult , Aged , Animals , Antigens, CD/analysis , Blotting, Western , Bone Marrow Cells/chemistry , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Separation , Cells, Cultured , Flow Cytometry , Humans , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C3H , Mice, Transgenic , Middle Aged , Nerve Tissue Proteins/metabolism , Neurons/chemistry , Neurons/cytology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BioDrugs ; 19(2): 97-127, 2005.
Article En | MEDLINE | ID: mdl-15807629

There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.


Nerve Growth Factors/therapeutic use , Neurodegenerative Diseases/drug therapy , Animals , Humans , Meta-Analysis as Topic , Nerve Growth Factors/classification , Nerve Growth Factors/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology
11.
J Mol Neurosci ; 24(3): 353-86, 2004.
Article En | MEDLINE | ID: mdl-15655260

The rationale behind the use of cells as therapeutic modalities for neurodegenerative diseases in general, and in Parkinson's disease (PD) in particular, is that they will improve patient's functioning by replacing the damaged cell population. It is reasoned that these cells will survive, grow neurites, establish functional synapses, integrate best and durably with the host tissue mainly in the striatum, renew the impaired wiring, and lead to meaningful clinical improvement. To increase the generation of dopamine, researchers have already transplanted non-neuronal cells, without any genetic manipulation or after introduction of genes such as tyrosine hydroxylase, in animal models of PD. Because these cells were not of neuronal origin, they developed without control, did not integrate well into the brain parenchyma, and their survival rates were low. Clinical experiments using cell transplantation as a therapy for PD have been conducted since the 1980s. Most of these experiments used fetal dopaminergic cells originating in the ventral mesencephalic tissue obtained from fetuses. Although it was shown that the transplanted cells survived and some patients benefited from this treatment, others suffered from severe dyskinesia, probably caused by the graft's excessive and uncontrolled production and release of dopamine. It is now recognized that cell-replacement strategy will be effective in PD only if the transplanted cells have the same abilities, such as dopamine synthesis and control release, reuptake, and metabolizing dopamine, as the original dopaminergic neurons. Recent studies on embryonic and adult stem cells have demonstrated that cells are able to both self-renew and produce differentiated tissues, including dopaminergic neurons. These new methods offer real hope for tissue replacement in a wide range of diseases, especially PD. In this review we summarize the evidence of dopaminergic neuron generation from embryonic and adult stem cells, and discuss their application for cell therapy in PD.


Cell Differentiation/physiology , Graft Survival/physiology , Parkinson Disease/therapy , Pluripotent Stem Cells/physiology , Stem Cell Transplantation/methods , Animals , Disease Models, Animal , Dopamine/metabolism , Humans , Neurons/cytology , Neurons/metabolism , Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/trends , Stromal Cells/cytology , Stromal Cells/metabolism , Substantia Nigra/cytology , Substantia Nigra/embryology , Substantia Nigra/metabolism
12.
J Mol Neurosci ; 21(2): 121-32, 2003.
Article En | MEDLINE | ID: mdl-14593212

Mesenchymal stem cells in the adult bone marrow are differentiated to connective tissue, muscle, bone, cartilage, and fat cells. Recent studies in cultures, animal models, and humans demonstrated the plasticity of these cells and their capacity to express neuronal markers. However, questions were raised as to whether the neuronal phenotypes reflect transient changes or even fusion with neurons. In this study, we induced the differentiation of mouse stromal cells to neuron-like cells and observed the activation of the tissue-specific promoter of neuron-specific enolase (NSE). We used transgenic (Tg) mice that carry the antiapoptotic human bcl-2 gene, expressed only in neurons under the NSE promoter. Some previous studies have indicated that the transgene induces neuroprotection in various animal models of neurodegenerative diseases. We found that following induction, the mouse stromal cells demonstrate neuronal phenotype and express the neuronal marker, NeuN (neural nuclei protein). However, most of the stromal cells derived from the Tg mice, but not the wild type, also expressed human Bcl-2, as indicated by immunocytochemistry. Furthermore, these induced neuron-like cells were more resistant to cell death induced by dopamine. In conclusion, our experimental models showed that stromal cells might be induced to neuronal phenotypes and activate neuronal-specific promoters. Moreover, neurons targeted over expression of the human bcl-2 gene and provided high resistance against such apoptotic insults. This novel strategy reveals a new horizon in the improvement of gene therapy, based on stem cell transplantation in neurodegenerative diseases.


Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Genes, bcl-2/genetics , Phosphopyruvate Hydratase/genetics , Stromal Cells/metabolism , Animals , Biomarkers , Bone Marrow Cells/cytology , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Dopamine/toxicity , Drug Resistance/genetics , Gene Expression Regulation/genetics , Genetic Therapy/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Phenotype , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Stromal Cells/cytology , Stromal Cells/transplantation
13.
Neurotox Res ; 4(7-8): 609-616, 2002.
Article En | MEDLINE | ID: mdl-12709299

The exact pathogenesis of neuronal death following bleeding in brain parenchyma is still unknown. Hemoglobin (Hb) toxicity has been postulated to be one of the underlying mechanisms. The purpose of this study was to examine the possible contribution to neurotoxicity of each of the Hb compounds and to characterize the death pathway. Pheochromocytoma (PC12) and neuroblastoma (SH- SY5Y) cell lines were exposed to Hb, globin, hemin, protoporphyrin IX and iron for 1.5- 24 h. We found that Hb and hemin are highly toxic (LD(50) of 8 and 20 &mgr; mol/l, respectively) as compared to globin that was not toxic. In addition, protoporphyrin IX and iron, compounds of hemin, were less toxic than hemin itself (LD(50) of 962 and 2070 &mgr; mol/l respectively). We also demonstrated that non-specific protein digestion with proteinase-K, markedly increased Hb toxicity. Hemin-treated cells caused a typical apoptotic cell death pattern as indicated by DNA fragmentation, caspase activation and reduction in the mitochondrial membrane potential. Treatment with the antioxidant N-acetyl-L-cysteine or iron chelator, deferoxamine, diminished hemin-induced cell death, indicating a role of oxidative stress in this deleterious process. Thus, therapeutic strategies, based on antioxidant, iron chelator and anti-apoptotic agents may be effective in counteracting Hb neurotoxicity.

...